
A MARSHALL CAVENDISH 39 COMPUTER COURSE IN WEEKLY PARTS

IMIFPROGRAMMING - FOR FUN AN1 	FUTURE

Vol. 3 	 No 39

BASIC PROGRAMMING 81

MODELLING: FOOD FOR THOUGHT 	1209

Better modelling methods can be applied to
a real-life business situation

MACHINE CODE 40

COMMODORE ASSEMBLER UPDATE 	121:Al
SAVE machine code, use the assembler with disk
or tape, and extend existing facilities

MACHINE CODE 41

CLIFFHANGER: THE RISING TIDE 	1211111
Gain control over the tides lashing Willie's
cliffs by adding this part of Cliffhanger

BASIC PROGRAMMING 82

SQUEEZING OUT A TUNE 4..milimmill122

Even short tunes need reams of DATA lines. Longer
tunes can be played using this compression technique

GAMES PROGRAMMING 40

GO OUT WITH A BANG 	 1230

Breathe some life into Freddy and the Spider from
Mars by adding the animation routines

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.

PICTURE CREDITS
Front cover, Paul Chave. Pages 1209, 1210, 1211, 1212, 1215, Dave King. Pages
1214, 1215, Dave King. Pages 1216, 1217, 1218, 1219, 1220, 1221, Paddy
Mounter. Pages 1222, 1223, 1224, 1225, 1228, 1229, Paul Chave. Pages 1230,
1231, 1232, 1231. 1234, 1235, 1236, Mohsen John Modaberi.

© Marshall Cavendish Limited 19M/516
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London WI V SPA,
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IRL5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques orpostal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries-and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W IV SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K, rea
48K,128, and + sim COMMODORE 64 and 12B

El ACORN ELECTRON,
BE B and B+ 	DRAGON 32 and 64

a 	= VIC 20 	TCOLODUYR COMPUTER

SIMULATING THE WEATHER
NORMALLY DISTRIBUTED

VARIABLES
TRADING CONDITIONS

BOOK-KEEPING

Using a more efficient modelling
method, enter programs and see
how business principles apply to
making a profit from managing a
food stall
Modelling reality, on pages 1198 to 1203,
showed the importance of computer simul-
ations in today's Hi-tech society. You saw,
also, how to generate different types of ran-
dom variables to suit various events. The
method for generating normally distributed
variables is easy to understand, but it is
inefficient, as the Normal Simulation
program showed—a total of 15 random num-
bers were used to generate a single normal
variable. The program listed here employs a
more efficient method which, together with
some of the ideas developed in the earlier
article, helps to model certain aspects of a
small business. You can treat this program as
a game (and it is an interesting one), but not
before you have considered it in its true
light—as a model of a real venture.

a
10 POKE 23658,8: POKE 23609,12
20 PAPER 0:BORDER 0:INK 7:CLS
30 PRINT AT 0,8;INVERSE 1;

"0 POTATOMAN IA111"
40 DIM A$(4,12):DIM L(2):DIM D(10):DIM

W(2):DIM Q(2):DIM P(2)
50 LET A$(1) ="HOT AND DRY":LET

D(3) =150:LET D(4)=300
60 LET A$(2)="HOT AND WET":LET D(5) =

100:LET D(6)=200
70 LET A$(3) = "COLD AND DRY":LET

D(7) =250:LET D(8)=160
80 LET A$(4) = "COLD AND WET":LET

D(9) = 200:LET D(10)=100
580 DIM C(4,2): LET C(1,1)=.1: LET

C(1,2)=.15
590 LETC(2,1) = 0.5:LETC(2,2) = 0.25
600 LETC(3,1) = 0.01:LETC(3,2)= 0.12
610 LETC(4,1) =10LETC(4,2) =10
620 INPUT "HOW MANY PLAYERS

(1 — 6)? ❑ ";N
625 IF N<1 OR N>6 THEN GOTO 620
627 DIM K(N): DIM T(2,N): DIM 0(2,N)
630 FOR 1=1 TO 2: FOR J=1 TO N
640 LET T(I,J) = 0

650 NEXT J: NEXT I
700 FOR K=1 TO 10
710 LET P1 =INT (10*(.3+ (RND*1/2)))/10
720 LET P2= INT (10*(.2+ (RND*1/2)))/10
730 PRINT INK 4; BRIGHT 1;" 	

	 ❑ ❑ ❑ Day:";
INK 7;K;INK 4;'" 	

740 PRINT "Prob. of a hot dry day
is ";100*PI;"%"

750 PRINT "Prob. of a dry day
is ";1 00*P2;"%"

760 GOSUB 1400
770 LET U1 = RND*1: LET U2= RND*1
780 LET V1 = SQR (2*(LN (1/U1)))
790 LET V2= COS (2*PrU2): LET V3= SIN

(2*PI*U2)
800 LET Z1 = INT (V1*V2): LET Z2= INT

(V1*V3)
810 LET Al =Pl*P2: LET A2= P1
820 LET A3= P1 + P2 —A1: LET A4=1: LET

F=RND*1
821 PRINT : IF F < Al

THEN LET R=1
822 IF F > Al AND F< =A2

THEN LET R=2
823 IF F >A2 AND F< =A3

THEN LET R=3
824 IF F > A3 AND F< =A4

THEN LET R=4
830 CLS : PRINT "THE WEATHER

IS ❑ ";A$(R)
840 LET D(1)= INT (D(1 + R*2) +

Z1*25): LET D(2) = INT
(D(2 + R*2) + Z2*40)

850 PRINT "Demand for baked
potatoes = ";D(1)

860 PRINT "Demand for cans of
cola = ";D(2)

990 PRINT "
1000 PRINT INK 5; INVERSE 1;" PLAYER

TAKINGS COSTS PROFIT"
1010 GOSUB 1600
1020 NEXT K
1030 PAUSE 200
1090 CLS
1100 PRINT "FINAL RESULTS FOR 10

DAYS""
1110 PRINT "PLAYER","TOTAL PROFIT"
1120 FOR J=1 TON
1130 PRINT J,K(J): NEXT J
1140 PRINT ": PRINT "GAME OVER"
1150 STOP
1400 PRINT "ORDERS PLEASE": PRINT
1410 FOR J=1 TO N
1420 PRINT "PLAYER ";J: PRINT
1430 INPUT `.`NUMBER OF HOT

POTATOES ";0(1,J)
1440 INPUT "NUMBER OF COLA

CANS ";0(2,J)
1450 NEXT J
1460 RETURN
1600 FOR J=1 TO N
1610 FOR 1=1 TO 2
1620 LET L = 0(I,J)
1630 IF D(I)<L THEN LET L= D(I)
1650 LET W(I)=C(2,1)*L
1670 LET Q(I) = C(1,1)*0(I,J)
1680 IF D(I)>L(I) THEN GOTO 1700
1690 LET Q(I) = Q(I) —C(3,I)*(0

(I,J) — D(I))
1700 LET P(1)=W(1)-0(1)
1710 LET T(I,J)=T(I,J)+ P(I)
1720 NEXT I
1730 LET K(J)=T(1,J) + T(2,J) —200
1740 LET E = W(1) +W(2)
1750 LET C = Q(1) + Q(2) + 20
1760 LET P=P(1)+p(2) - 20
1770 PRINT INK 6;TAB 3;J;TAB 9;E;TAB

18;C;TAB 25;P;"
1780 NEXT J
1790 RETURN

To run this program on the Vic 20, you need
to fit a 3K memory expansion cartridge.

10 PRINT "pm >P1ZIPOTATOMANIAN

20 DIM D$(10)
30 A$(1) = "HOT AND DRY":D(3) =150:

D(4) =300
40 A$(2) ="HOT AND WET":D(5) =100:

D(6)=200
50 A$(3) ="COLD AND DRY":D(7) =250:

D(8)=160
60 A$(4) ="COLD AND WET":D(9) = 200:

D(10)=100
580 C1(1)=.1:C1(2)=.15
590 C2(1) = .5:C2(2)=.25
600 C3(1) = .01:C3(2)=.12
620 PRINT"HOW MANY PLAYERS (1-6)?"
625 GET N$:N=VAL(N$):IF N<1 OR N>6

THEN 625
630 FOR I =1T02:FOR J=1 TO N
640 TP(I,J) = 0

650 NEXT J,I
700 FOR K=1 TO 10
710 P1 =.1*INT(10*(.3 + RND(1)/2))
720 P2 = .1*INT(10*(.2 + RND(1)/2))
730 PRINT "ID gg > ipAy",K"gg gg"
740 PRINT "PROBABILITY OF A HOT":PRINT

"DAY IS";100*P1;"%"
750 PRINT "PROBABILITY OF A DRY":PRINT

"DAY IS";100*P2;"%"
760 GOSUB 1400
770 U1 =RND(1):U2=RND(1)
780 V1 =SQR(2*LOG(1/U1))
790 V2= COS(2*n*U2):V3 = SIN(2 * 7r*U2)
800 Z1 = INT(V1*V2):Z2= INT(V1*V3)
810 Al =Pl*P2:A2= P1
820 A3= P1 + P2-Al:A4 =1:F = RND(1)
821 IF F< =A1 THEN R=1
822 IF F>A1 AND F< =A2 THEN R=2
823 IF F > A2 AND F< =A3 THEN R=3
824 IF F>A3 AND F< =A4 THEN R=4
830 PRINT "WEATHER IS ❑ ";A$(R)
840 D(1) = INT(D(1 + R*2) +Z1*25):D(2)=

INT(D(2+ R*2) +Z2*40)

850 PRINT "DEMAND FOR BAKED":PRINT
"POTATOES IS";D(1)

860 PRINT "DEMAND FOR CANS OF":PRINT
"COLA IS";D(2)

1000 PRINT "gggiPLAYER,TAK,COSTS,
PROF ❑ "

1010 GOSUB 1600
1020 NEXTK
1030 FOR 1=1 TO 2000:NEXT I
1100 PRINT "QFINAL RESULTS FOR":

PRINT "10 DAYS TRADINGgg"
1110 PRINT "ZIPLAYERMIDJkla

TOTAL PROFITS"
1120 FOR J=1 TO N
1130 PRINT J,TT(J):NEXT J
1150 END
1400 PRINT "gg > M aORDERS PLEASE

1410 FOR J=1 TO N
1420 PRINT "PLAYER";J
1430 PRINT "ggNUMBER OF HOT POTATOES

REQUIRED":INPUT 0(1,J)
1440 PRINT "NUMBER OF COLA CANS

REQUIRED":INPUT 0(2,J)
1450 NEXT J:PRINT"D"
1460 RETURN
1600 FOR J=1 TO N
1610 FOR 1=1 TO 2
1620 L= 0(1,J)
1630 IF DM< L THEN L= D(1)
1650 RV(I) = C2(1)1
1670 TC(I) = C1(I)*0(1,J)
1680 IF D(I) < =L THEN TC(I)=TC(I)- C3

(1)*(0(14)-D(1))
1700 P(I) = RV(I) -TC(I)
1710 TP(I,J) =TP(I,J) + P(I)
1720 NEXT I
1730 TT(J)=TP(1,J) +TP(2,J) -200
1740 E=RV(1)+RV(2)
1750 C=TC(1) +TC(2) +20
1760 P= P(1) + P(2) -20
1770 PRINT "a"J"M,"E","C","P
1780 NEXT J
1785 POKE 198,0:WAIT 198,1:POKE 198,0
1790 RETURN

20 DIM C1(2),C2(2),C3(2),D(10),0(2,6),P(2),
RV(2),TT(6),TC(2),TP(2,6),A$(4)

30 A$(1) = "HOT AND DRY":D(3) =150:
D(4)=300

40 A$(2) = "HOT AND WET":D(5) =100:
D(6) = 200

50 A$(3) = "COLD AND DRY":D(7) = 250:
D(8)=160

60 A$(4) ="COLD AND WET":D(9) = 200:
D(10)=100

575 MODE4
580 C1(1) = .1:C1(2) = .15
590 C2(1) = .5:C2(2) = .25
600 C3(1) = .01:C3(2) =.12

610 PRINT "POTATOMANIA"
620 PRINT"HOW MANY PLAYERS(1-6)":

REPEAT N = GET -48:UNTIL (N > 0 AND
N <7)

630 FOR 1=1 TO 2:FOR J=1 TO N
640 TP(I,J) = 0
650 NEXT,
700 FOR K=1 TO 10
710 P1 = .1*INT(10*(.3 + RND(1)/2))
720 P2 = .1*INT(10*(.2 + RND(1)/2))
725 PRINTSTRING$(40,"_")
730 PRINT""DAY ❑ ";K"
740 PRINT"PROBABILITY OF A HOT DAY

IS ❑ ";100*P1;"%"
750 PRINT"PROBABILITY OF A DRY DAY

IS El":;100132;"%"
760 GOSUB 1400
770 Ul =RND(1):U2=RND(1)
780 V1 = SQR(2 * LN(1/U1))
790 V2 = COS(2 * 13 1112):V3 = SIN(2*PI*U2)
800 Z1 = Vl*V2:Z2 =V1*V3
810 Al = P1132:A2= P1
820 A3= P1 + P2 - Al :A4 =1:F = RND(1)
821 IF F< =A1 THEN R=1
822 IF F >A1 AND F< =A2 THEN R=2
823 IF F>A2 AND F< =A3 THEN R=3
824 IF F>A3 AND F< =A4 THEN R=4
830 CLS:PRINT"THE WEATHER IS ❑ ";A$(R)
840 D(1) = INT(D(1 + R*2) +Z1*25):

D(2) = INT(D(2 + R*2) +Z2 * 40)
850 PRINT"DEMAND FOR BAKED POTATOES

ISEI";D(1)
860 PRINT"DEMAND FOR CANS OF COLA

IS111";D(2)
1000 PRINT""PLAYER","TAKINGS",

"COSTS","PROFIT"
1010 GOSUB 1600
1020 NEXT
1030 I = INKEY(200)
1090 CLS
1100 PRINT""FINAL RESULTS FOR 10 DAYS

TRADING"
1110 PRINT"PLAYER", "TOTAL PROFITS"
1120 FOR J=1 TON
1130 PRINT;J,TT(J):NEXT
1150 END
1400 PRINT"TAB(13)"ORDERS PLEASE"
1410 FOR J=1 TO N
1420 PRINT"PLAYER ❑ ";J'
1430 INPUT"NUMBER OF HOT POTATOES

REQUIRED",0(1,J)
1440 INPUT"NUMBER OF COLA CANS

REQUIRED",0(2,J)
1450 NEXT
1460 RETURN
1600 FOR J=1 TO N
1610 FOR 1=1 TO 2
1620 L =0(I,J)
1630 IF D(I)<L THEN L=D(I)
1650 RV(1)=C2(1)*L.
1670 TC(I) =C1(1) * 0(14)

1680 IF DM< =L THEN TC(I)=
TC(1)—C3(1)"(0(14)—D(1))

1700 P(I) = RV(I) —TC(I)
1710 TP(I,J) =TP(I,J) + P(I)
1720 NEXT 1
1730 TT(J)=TP(1,J) +TP(2,J) — 200
1740 E=RV(1)+RV(2)
1750 C=TC(1)+TC(2) +20
1760 P= P(1) + P(2)-20
1770 PRINT;J,;E,;C,;P
1780 NEXT
1790 RETURN

MI !HI
10 PI =4"ATN(1)
20 CLS
30 PRINT@10,"potatomania":PRINT:PRINT
580 C1(1)=.1:C1(2)=.15
590 C2(1) = .5:C2(2) = .25
600 C3(1) = .01:C3(2) = .12
620 INPUT" HOW MANY PLAYERS(1-6)111";N
625 IF N<1 OR N>6 THEN 620
630 FOR 1=1 TO 2:FOR J=1 TO N
640 TP(I,J)= 0
650 NEXTJ,I
700 FOR K=1 TO 10
710 P1 = INT(10*(.3 + RND(0)/2))/10
720 P2 = INT(10"(.2 + RND(0)/2))/10
725 PRINT"PRESS ANY KEY TO CONTINUE"
726 IF 1NKEY$=`"' THEN 726
730 PRINT"day";K:PRINT
740 PRINT"PROB. OF A HOT DAY

IS' ;100*P1;"%"
750 PRINT"PROB. OF A DRY DAY

IS";100"P2;"%"
760 GOSUB1400
770 U1= RND(0):U2= RND(0)
780 V1 =SQR(2*(LOG(1/U1)))
790 V2 = COS(2*Pl*U2):V3 =SIN(2*PI"U2)
800 Z1= INT(V1*V2):Z2= INT(V1"V3)
810 Al = P1*P2:A2= P1
820 A3 = P1 + P2 — Al :A4 =1:F = RN D(0)
821 CLS: IF F< =A1 THEN 830
822 IF F >A1 AND F< =A2 THEN 870
823 IF F>A2 AND F< =A3 THEN 810
824 IF F >A3 AND F< =A4 THEN 950
830 PRINT"WEATHER IS HOT AND DRY"
840 D(1)=150 +Z1"25:D(2) =300 +Z2*40:

GOT0970
870 PRINT"WEATHER IS HOT AND WET"
880 D(1)=100 +Z1*25:D(2) =200 +Z2*40:

GOT0970
910 PRINT"WEATHER IS COLD AND DRY"
920 D(1) = 250 +Z1*25:D(2) =160+Z2*40:

GOT0970
950 PRINT"WEATHER IS COLD AND WET"
960 D(1)=200 +Z1*25:D(2) =100 +Z2*40
970 PRINT"DEMAND FOR BAKED

POTATOES =";D(1)
980 PRINT"DEMAND FOR CANS OF

COLA= ";D(2)

1000 PRINT" PLAYER El ❑ TAKINGS ❑ 111
COSTS ❑ ❑ PROFITS"

1010 GOSUB1600
1020 NEXT K
1030 FOR 1 = 1 TO 2000:NEXT
1090 CLS
1100 PRINT" ❑ FINAL RESULTS FOR 10

DAYS":PRINT:PRINT
1110 PRINT"PLAYER","TOTAL PROFIT"
1120 FOR J=1 TO N
1130 PRINTJ,TT(J):NEXT J
1140 PRINT:PRINT:PRINT"

GAME OVER"
1150 END
1400 PRINTTAB(8);"orders

please":PRINT
1410 FOR J=1 TO N
1420 PRINT"PLAYER";J:PRINT
1430 INPUT"NUMBER OF HOT

POTATOES";0(1,J)
1440 INPUT"NUMBER OF COLA

CANS' ;0(2,J)

1450 NEXT J
1460 RETURN
1600 FOR J=1 TO N
1610 FOR 1 = 1 TO 2
1620 L = 0 (1,J)
1630 IF D(I) < L THEN L= D(I)
1650 RV(I) = C2(1)1
1670 TC(I) =C1(1)*0(1,J)
1680 IF D(I) < =L THEN TC(I)=TC(I)—

C3(I)*(0(1,J)—D(I))
1700 P(I) = RV(I) —TC(I)
1710 TP(I,J) =TP(I,J) + PO)
1720 NEXT 1
1730 TT(J) =TP(1,J) +TP(2,J) —200
1740 E=RV(1)+RV(2)
1750 C=TC(1) +TC(2) +20
1760 P = P(1) + P(2)-20
1770 PRINTUSING"01110 # E E 	#

###.## ❑ ####.## ❑ #
.# #";J,E,C,P

1780 NEXT J
1790 RETURN

The program concentrates on the `sink-or-
swim' aspect of a business—profit and loss.
When you RUN, you can choose either to be
the only participant or to trade alongside as
many as five other managers. You might even
choose to play the part of two or even three
managers, making different decisions in each
role. Take this as an opportunity to compare
the results of, say, trading cautiously in one
instance and enterprisingly, taking chances in
another. Whatever you choose, enter the
number of players to start.

Each player manages a hot potato stall
selling hot potatoes and cans of cola drink.
Demand depends on the weather. If the
weather is cold, the potatoes tend to sell
easily. If the sun shines, then plenty of drinks
will be sold. Unfortunately, the manager
needs to buy stock on the evening before the
next day's trading, and so doesn't know the
prevailing weather conditions. Fortunately,
there is a weather forecast—correct about 70
per cent of the time. After ten days buying
and selling, the player with the biggest profit
is the winner.

The first part of the program (up to Line
650) sets variables for screen display and for
the trading conditions. You pay rent at £20
per day. You buy potatoes at 10p each and sell
them at 50p each. Cola costs you 15p a can
and you sell them at 25p. Goods left over from
each day's trading are disposed of at scrap
value—lp for potatoes and 12p for cola. Each
game lasts ten days.

The demand indicator for goods is as in the

table below, and this is where one important
element enters into the model. Naturally, the
best days for hot potatoes are among the
poorest for cold drinks, but there is sufficient
spread of demand between the two items to
enable managers to do a reasonable trade,
whatever the weather. All this, however,
depends on what you make of the weather
forecast, bearing in mind that it is not
reliable—as in reality. The probabilities of a
hot day and a dry day are determined at Lines
710 and 720, then used (Lines 810 to 824) to
simulate the weather.

Lines 770 to 800 use a sophisticated
method for generating normally distributed
random variables. These are used to simulate
demand at Lines 840. Line 770 generates two
random variables (U, and U,), but remember
that these are not truly random. So they are
processed within three mathematical for-
mulae. At Line 780, U, is inverted and
squared, then its natural log is taken. Finally,
the square root of the result is set to V,. Line
790 sets V, to the cosine of the circumference
of a circle of radius U„ then sets V, to the sine
of the same circumference. The variables V„
V, and V, are further processed (Line 800) to
give normally distributed variables Z, and 4.

Besides Lines 1600 to the end of the
program, the rest of the program deals with
the organization of data input and the print-
ing of results.

When you play this game, you will need to
watch every penny. The results can be agoniz-
ingly close—even after ten days' trading.

Enter these routines and turn your
Commodore assembler into a far
more useful tool* Now you can
SAVE machine code to tape or disk
and extend the existing features

The Commodore assembler on pages 402 to
405 does its job very well, but you may have
wished for more facilities to help you develop
your programs. This article contains a num-
ber of important additional features which
will make machine code programming so
much easier.

If you find using the machine code monitor
to SAVE machine code rather fiddly and time-
consuming, there is a complete machine code
SAVE routine to add to the assembler. The
program now has all you need to use either
tape or disk for LOADing and SAVEing ma-
chine code.

THE SAVE ROUTINE
LOAD in your existing assembler—or, if
you're starting from scratch, type in the
program on pages 402 to 405, being careful to
enter all the commas in the DATA lines—and
add these lines:

185 PRINTQR$" Ei7K El SAVE M-CODE"R$
OR$11118L E CLEAR MEMORY"R$QR$
"1391L ❑ EXIT PROGRAM"

1300 INPUT "1:2 aSTART ADDRESS•";SA
1310 INPUT "a ❑ END ADDRESS ❑ •";

EN:EN= EN + 1:JR= 0
1320 NM$="":1NPUT "a El El FILE NAME

❑ ❑ •";NM$:IF NM$="" THEN 1320
1330 SZ =1:INPUT 	(D)ISK,(T)APENI";

D$:IF D$="D" THEN SZ =8
1333 IF D$< > "D" AND D$< > "T"

THEN PRINT" ❑ ";:GOTO 1330
1335 IF JR =1 THEN JR= 0:RETURN
1340 S1 = INT(SA/256):S2= SA— S1*256
1350 S3= INT(EN/256):S4= EN — S3 * 256
1360 PRINT" ID P ❑ 43,";S2;":13 17 44,";S1
1370 PRINT"gg P ❑ 45,";$4;":

P E146,";S3
1380 PRINT"gg ga SAVE" + CHR$(34) +

NM$ + CHR$(34) +",";SZ;",1"
1390 PRINT"gggggigggggagggggp

❑ 43,"; PEEK (43);": P ❑ 44,"; P EEK (44)
1400 PRINT"Ag P ❑ 45,";PEEK(45);":1❑

46,";PEEK(46):PRINT"gg ggRETURN121":
END

1500 PRINTTAB(11)"aARE YOU SURE
(Y/N)?'

1510 GETA$:IF A$ ="N"THEN RETURN
1520 IF A$="Y" AND JJ =8 THEN RUN

1530 IF A$="Y" AND JJ = 9 THEN
PRINT"0 ❑ ":POKE 53280,14:POKE
53281,6:END

1540 GOTO 1510

When you choose to SAVE the assembled
code—option 7—you'll be asked for the start
and end address of the code, a file name for
the code to be SAVEd under and if you wish to
SAVE to disk or tape.

The machine goes into direct mode, and
displays two lists of POKEs. To SAVE machine

code you should position the cursor at the
first POKE, and hit 'RETURN three times.

The first three POKEs move BASIC so that
the machine code can be SAVEd. Once SAVEing
is completed, the second three POKEs move
BASIC back again.

After SAVEing the machine code, you can
clear the assembly language mnemonics from
memory by choosing option 8.

If you wish to LOAD machine code, make
sure you're outside the assembler. in other
words, if the assembler is RUNning, you

A MACHINE CODE SAVE
FEATURE

USING THE ASSEMBLER WITH
TAPE OR DISK

NAMING FILES

OUT OF MEMORY WARNING
IMPROVING THE EDIT MODE

PRINTOUT FROM ASSEMBLING
PROGRAMS

A PAUSE FACILITY

should choose option nine to exit the
program. Now type LOAD "name",1,1 (for
tape) or LOAD "name",8,1 (for disk), and the
code will LOAD.

MORE MODIFICATIONS
Options one and two can be modified, allow-
ing you to LOAD assembly language from disk
as well as tape. There is also an 'out of
memory' feature, an improved edit mode, a
facility for having printout from an assem-
bling program, and a pause facility.

Here are the additions:

170 PRINTQR$131 ❑ LOAD ASSEM
PROB"RQR13211 ❑ SAVE ASSEM
PROG"R$QRVE1311 El ASSEMBLE"

200 GETA$:IFVAL(A$) <10RVAL(A$) >9
THEN200

220 ONJJGOSUB1080,1100,250,1120,1200,
1230,1300,1500,1500

225 POKE198,0:PRINTTAB(15)" 	gg
HIT ANY KEY"

255 INPUT "DO Y0U WANT PRINT0UT

(Y/N)",ANVPRINT" E " : RK =0
280 IF PS=3 AND AN$="Y" AND RK = 0

THEN OPEN4,4:CMD4:RK =1
285 GOSUB 980
295 IF PS=3 AND PEEK(197) = 57 THEN

POKE198,0:WAIT198,1:POKE198,0
310 IFOP$ ="END"ANDPS =3THEN

PRINT"MEND LAST ADDR";P —1:
IFAN$ = "Y"THENPRINT# 4:CLOSE4

1080 JR =1:GOSUB 1320:0PEN1,SZANM$
1100 JR =1:GOSUB 1320:0PEN1,SZ,1,NM$
1135 IF N>199 THEN PRINT"MEMORY

FULL!":RETURN
1145 IF IP$=" ♦ " AND N>0 THEN PRINT

"0 ❑ ":N = N — 1:K = K —10:GOTO
1130

1270 PO KE198,0: PR INT" El ": FOR K3 = K1TO
K2:PRINT"ErK3*1011111"T$(K3)

1280 WAIT 198,1:POKE 198,0:NEXT:RETURN

When you are editing an assembly language
program, simply pressing the up arrow key
and RETURN will move you back to the last
line you edited, allowing easy correction of
mistakes.

When the program is displaying assembled
code, you can pause the listing by pressing the
left arrow key. You can now note down any
codes you may need to record before restart-
ing the listing pressing any key.

USING THE ASSEMBLER
The program is menu-driven, and is very easy
to use. However, there are a number of points
you should bear in mind when using it:
• Make sure you have tested the program
using the routine printed on page 404. If you
have problems at this stage, check the
assembler itself.
• If you suffer error messages arising from
DATA lines, the most likely problem are the
commas—for example, make sure you have
included the comma at the end of Line 70.
• Each 	separate 	assembly 	language
mnemonic needs a BASIC line number.
These should run 10, 20, 30, 40 	and so
on.
• Line 10 is normally an origin—such as 10
ORG 49152. The assembler will not work
unless there is a space between ORG and the
address.

Willie may be cute but he's no
Canute and he is going to be
threatened by the oncoming sea*
In this part the rollers are set
crashing and climbing

Willie is at the seaside and hardly a mention
has been made of the sea yet. What's more, it
is one of his major hazards. If he loses his
nerve when the boulders are tumbling or the
snakes are hissing, he will quickly find him-
self drowned. So now is the time to supply
Cliffhanger with gallons of the briny.

a
The following routine turns on the flood tide
so that Willie will not dawdle on the way to
rescuing his picnic goodies:

org 58882
sea 	Id bc,57312

Id a,(57353)
bit 2,a
jr z,spt
Id bc,57320

spt 	Id hl,(57354)
Id a,15
Id d,32

spu push de
push bc
call print
inc hl
pop bc
pop de

Although there appears to be a lot of sea, there
are, in fact, only two characters' worth in the
data table. The first occupies the eight loc-
ations from 57,312 onwards and the second
occupies the eight from 57,320. You may
think that this is not enough water even to
dampen Willie's feet. But when these two sea
characters are printed next to each other over
and over again in alternate lines, you rapidly
build up an ocean.

As the sea is going to be printed on the
screen a character at a time, the print routine is
going to be used again. So the relevant
parameters have to be loaded into the correct
registers. As always, BC carries the pointer to
the first byte of data. A carries the colour.
And HL carries the screen position the data is
to be printed in. So BC is loaded up with the
address of the first byte of the first sea
character.

The variable in 57,353 is the so-called sea
delay. This controls the movement of the sea.
Bit two is used as a flag to tell the processor
which sea character was used for the last line.

The contents of the sea delay are loaded
into the accumulator and the instruction bit
2,a isolates that particular bit. If it is not set,
the jr z instruction which follows it jumps the
processor over the next instruction. But if it is

set, the jump is not made, and BC is
loaded with the address of the

beginning of the second
sea character.

SEA CHANGE
HL is loaded with the

contents of memory location
57,320. This location carries

the position of the sea that is about
to be printed and it has been initialized

by the routine in part seven of Cliffhanger
to the bottom left-hand corner of the screen.

A is loaded with 15, to give the sea the
correct bluey tinge, and the D register is
loaded with 32. This is going to be used as a
counter to count across the 32 columns of the
screen.

This counter needs to be preserved intact
while the processor goes off to perform the
print routine, so DE is pushed onto the stack.
The data for the sea character is going to be

used over again too, because each line of the
sea is made up of the same sea character, so
BC is pushed onto the stack as well. The print
routine is then called, and the eight bytes of
the appropriate sea character are printed up
on the correct place on the screen.

HL is then incremented to move the screen
pointer onto the next position along the row.
The data pointer is moved back to the
beginning of the appropriate sea character—it
has been incremented during the print
routine—by popping it off the stack. And the
column counter is popped off the stack again
too.

The column counter is then decremented
and if it hasn't counted down to 0, the jr nz
instruction loops back so that the processor
prints the sea character in the next screen
position along that particular line.

When the counter in D has counted down
to 0, the processor drops out of the loop and
proceeds with the next instruction.

TIME AND TIDE
The sea delay is then loaded into the ac-
cumulator, decremented and stored back into
57,353. If it has not counted down to zero, the
jr nz instruction jumps the processor over the
next few instructions to the end of the routine
where it returns.

If it has counted down to zero, the sea delay
is reset to 10.

The sea position pointer is then loaded
back into HL, 32 is loaded into DE and
subtracted. The result in HL is stored back in
the sea pointer's location, 57,354. So next time
this routine is called, the sea is moved up one
row*

This routine will move the sea up the screen
by one line every time the sea counter variable
in $COOC is counted down to zero. And it
scrolls the sea one high resolution pixel to the
left to give the impression that the sea is
moving.

ORG 22272
LDY # 8
LDX # 0

LOOP LDA $31 F0,X

dec d
jr nz,spu
Id a,(57353)
dec a
Id (57353),a
jr nz,srt
Id a,10
Id (57353),a
Id h1,(57354)
Id de,32
sbc hl,de
Id (57354),hI

srt 	ret
org 58217

nrint

ROL A
ROL $31 F0,X
I NX
DEY

THE SEA DELAY
COLOURING THE SEA
MOVING THE SEA UP

REPEATING THE DROPS
RESETTING THE SEA DELAY

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

BNE LOOP
DEC $C00C
BEQ XX
RTS

XX 	LDA $C002
STA $C00C
LDY # 0
LDX #40
LDA $C00D
STA $FB
LDA $C00E
STA $FC
SEC
LDA $FB
SBC #40
STA $FB
LDA $FC
SBC # 0

THE ROLLERS
The first part of this routine scrolls the sea to
the left. But as one piece of sea looks very
much like another, it is only necessary to
rotate the bits of each byte on the screen,
provided you don't lose the bit that goes into
the carry flag. But this problem is got over
simply.

Y is loaded with 8 as a counter—there are 8
bytes of data in each character square of the
sea. X is loaded with 0 and is going to be used
as an offset.

The first byte of sea data at $31 FO is loaded
into the accumulator and rotated to the left.
This puts its most significant bit into the
carry flag. The data byte in $31F0 is then
rotated as well, pulling the contents of the
carry flag into its least significant bit. So the
bits of the first byte of the sea data are rotated,
without losing anything. This simple dodge
has shifted what was in bit seven into bit zero.

The offset in X is then incremented to
move onto the next byte and the loop counter
in Y is decremented. If it has not counted
down to 0, the processor loops back and
rotates the next byte of sea data. But if all
eight bytes have been rotated the processor
drops out of the loop and proceeds with the
next instruction.

MOVE ON UP
The contents of the sea counter in $COOC are
decremented. And if they have not counted
down to zero yet, it is not time to move the sea
up, the BEQ condition allows the processor to
pass through to the RTS and leave the routine.

But if it has* counted down to zero, the
processor skips the RTS and continues.

The sea counter is then reset by storing the
delay variable in it. This allows the speed of
the advance of the sea to be altered during the
course of the game.

The Y register is loaded with 0. It is going
to be used as an offset, as this time, pre-
indexed indirect addressing is going to be
used. Only post-indexed indirect addressing
is allowed with the X register.

X is loaded with 40 to count across the 40-
column screen.

The low and high bytes of the sea position

variable in $COOD and $COOE are stored
temporarily in the locations $FB and $FC
on the zero page where thay can be manipu-
lated easily. These point to the left-hand end of
the line of sea about to be printed. The carry
flag is then set—you are about to do a
subtraction.

The number 40 is then subtracted from the
low byte of the sea's screen position and zero
is subtracted from the high byte to take any
carry into account. This moves the sea po-
sition pointer one line up the screen. The
result is stored back in $FB and $FC on the
zero page and the pointer in the variable table
at $COOD and $C00E.

That done, the carry flag is cleared and the
number 212 is added to the high byte of the
sea's screen position. This moves the pointer
onto the appropriate location in the colour
memory. The result is stored temporarily in
zero-page memory location $FE. And the low
byte of the sea position in $FB is copied direct
into $FD to complete the colour pointer.

STA $FC
LDA $FB
STA $C00D
LDA $FC
STA $C00E
CLC
ADC # 212
STA $FE
LDA $FB
STA $FD

LOOPA LDA # 82
STA ($FB),Y
LDA #6
STA ($FD),Y
INY
DEX
BNE LOOPA
RTS

260 JSR&FFEE
270 LDA # 4
280 JSR&FFEE
290 LDA # 0
300 JSR&FFEE
310 JSR&FFEE
320 JSR&FFEE
330 INC&87
340 LDA&87
350 AND#3
360 STA&87
370 LDA# 19
380 JSR&FFEE
390 LDX&87
400 LDA8t1 CB2,X
410 JSR&FFEE
420 LDA #6
430 JSR&FFEE
440 LDA #0
450 JSR&FFEE
460 JSR&FFEE
470 JSR&FFEE
480 DEC&77
490 BEQLb2
500 RTS
510 .Lb2
520 LDA # 25
530 JSR&FFEE
540 LDA # 4
550 JSR&FFEE
560 LDA # 0

570 JSR&FFEE
580 JSR&FFEE
590 LDA&88
600 ASLA
610 ROL&70
620 ASLA
630 ROL&70
640 JSR&FFEE
650 LDA&70
660 AND# 3
670 JSR&FFEE
680 LDA #18
690 JSR&FFEE
700 LDA # 0
710 JSR&FFEE
720 LDX&87
730 LDA&1 CB2,X
740 JSR&FFEE
750 LDX# 0
760 .Lb1
770 LDA&1 CB6,X
780 JSR&FFEE
790 INX
800 CPX# 21
810 BNELb1
820 INC&88
830 LDA # 5
840 STA&77
850 RTS
860]NEXT

POURING IN THE SEA
UDG 62, which has been defined as a little bit
of the sea in an earlier part of Cliffhanger, is
loaded into the accumulator and stored on the
screen in the position pointed to by the sea
pointer in $FB and $FC, offset by Y — Y is
going to count across the line, a character
square at a time.

Then the accumulator is loaded with 6, the
number associated with the colour blue. And
the appropriate character square is filled in
with blue, by storing the 6 colour memory
location given by the pointer in $FD and $FE,

offset by Y again, Y is going to count across
the line, filling in blue, a character square at a
time.

Y is then incremented to move it onto the
next character square and the counter in X is
decremented. If X has not counted down to
zero, the processor loops back and deals with
the next character square, filling it in with the
sea UDG and the colour blue.

When X has counted down to zero and the
whole line of sea has been

printed, the processor
drops out of the

loop, executes
the RTS

and leaves
the routine.

The following routine prints the sea on the
screen and moves it. Set the machine up as
usual before you type it in.

70 DATA6,7,14,15
80 FORA% =13i1 CB2TO

MCB5:READ?A%:
NEXT

130 DATA25,1,0,5,0,
0,18,0,5,25,0,0,
251,4,0,25,17,0,5,
0,0

140 FORA% = &1CB6
TOM CCA:READ?A%:

NEXT
180 FORPASS =

0TO3STEP3
190 P%= &1CCB
200 [OPTPASS
210 .Move Sea
220 LDA # 19
230 JSR&FFEE
240 LDX&87
250 LDA8i1 CB2,X

To test the routine, the rest of the program
must be in memory* Then key in:

?&83 = 0:?&88 = 0:CALL &1 B32: R EP EAT
CALL &1CCB: FOR A% = 0 TO 200:
N EXT:U NTI L ?&88 = 240

SEA CHANGE
The impression that the sea is moving is given
by redefining colours 6, 7, 14 and 15—which
are blue and cyan, after being redefined in
part five of Cliffhanger—from blue to cyan
and back again. The data for the colours to be
changed are in the DATA in Line 70, and they
are read into a data table where the machine
code program can access it by Line 80.

A line of white dots is drawn along the top
of the sea to represent surf. The DATA for this
is in Line 130 and it is read into a data table by
Line 140.

The colours are redefined in exactly the
same way as they were in part five of Cliffhan-
ger (page 1037 of INPUT). Here, though, the
offset is stored in zero-page memory location
&87, because the colours are not being
changed in a closed loop here and the number
of the colour would be lost when the X
register was used elsewhere.

The colour change facility is switched on
by loading 19 into the accumulator and
jumping to the subroutine at FFEE* This is
the same as a VDU19 in BASIC. The colour to
be changed is read in from the data table by

the instruction in Line 250. 1CB2 is the base
address of the data table and the offset in X is
loaded up from &87 in the Line before.

The colour loaded up in that part of the
routine is then changed to colour 4—which is
blue. Then another three parameters also
have to be filled in with Os. These are not used
by the colour change routine, but Acorn have
reserved them for future use.

The offset in &87 is incremented in Line
330 to move onto the next colour* Then it is
loaded into the accumulator, ANDed with 3
and stored back in &87. This stops the offset
being incremented to more than 3. There are
only four colours so the offset only has to
count from 0 to 3.

The next part of the routine—from Line
370 to 470—changes the next colour to colour
6, which is cyan, in exactly the same way.

THE INCOMING TIDE
The variable stored in &77 is the so-called sea
delay. It counts the number of times the sea
colours are moved before a new line of sea has
to be printed on the screen*

This is set in the
initialization routine and
is reset to 5 at the end
of this routine* It is

simply a device to stop the sea advancing too
fast* Here the sea only advances once every
five times the colours are changed.

The sea delay is decremented by the
instruction in Line &77. If it has counted
down to zero, the BEQ instruction branches
over the RTS instruction and the processor
continues with the routine* Otherwise it
returns.

If it is time for the tide to advance, A is
loaded with 25 and FFEE is called. This is the
same as a BASIC MOVE command. A 4 is then
output to FFEE, which gives a MOVE or
PLOT4. 0 is then output to FFEE twice, which
sets the low byte and the high byte of the X
coordinate.

Memory location &88 contains the Y co-
ordinate of the next line of sea up the screen,
divided by four. By dividing the Y coordinate
by four it can be stored in one byte.

To multiply the contents of &88 by four,
they are loaded into the accumulator and two
arithmetic shifts to the left are performed.
And any bits pushed out of the register by this
operation are rotated into the zero-page mem-
ory location &70. This operation leaves the
low byte of the Y coordinate in the
accumulator—in the position it is needed for
outputting to FFEE in Line 640.

The high byte of the Y coordinate is the
two least significant bits that have been

shifted into &70. But the contents of the rest
of the bits are not required. So the contents
are loaded into the accumulator and AN Ded
with 3. This preserves the two least signifi-
cant bits and sets the rest to zero. And as the
result is left in A, it can be output to FFEE
simply by jumping to that subroutine with
the instruction in Line 670. The cursor is now
in position at the left-hand end of the new line
of sea about to be printed.

HIGH SEAS
The colour of the new line of sea then has to
be set. 18 is loaded into the accumulator and
FFEE is called. This gives you a GCOL
command. The 0 then output to FFEE makes
it give the colour specified directly.

The second parameter output to FFEE is
now the colour to be used. And the colour
number to be output is picked up from the
colour data table by the instruction in Line
730. So the colour to be used is cyan, because
the colour picked up from the data table is the
last one to have been redefined.

X is then set back to 0 as it is going to be
used as a counter to count along the new line
of sea. The instruction in Line 770 loads up
the appropriate sea character with its surf
from the sea data table and FFEE is called to
print it on the screen. X is incremented to
move onto the next character of data in the
table. And it is compared to 21, to see whether
the whole of the line of sea has been printed.

If it hasn't, the BN E instruction in Line 810
branches back to deal with the next character
square of the sea. If it has finished, the
processor moves on to increment the Y
coordinate in &88. 5 is then loaded into the
accumulator and stored in &77 to reset the sea
delay, and the processor returns.

1M ill
The following routine turns on the flood tide.

ORG 19678
SEA 	LDU # 18205

LDA 18246
BITA # 2
BEQ SPT
LDU # 18222

SPT 	LDX 18247
LDA #16

SPTI 	PSHS A,U
JSR CHARPR
PULS U,A
DECA
BNE SPTI
DEC 18246
BNE SRT
LDA # 10
STA 18246
LDX 18247
LEAX — 256,X
STX 18247

SRT 	RTS
CHARPR EQU 19402

To test this program you need to LOAD in the
rest of Cliffhanger and RUN the following
program:

5 POKE &H467F,8tH4C:POKE&H4C80,&H F3
10 EXEC19426
20 FORG 1T0160
30 EXEC19678
40 FOR H = 1T0100: N EXTH,G
50 GOT050

Once this sets the sea going, the tide will rise
until the whole screen is filled with water.
This will never happen when the game is
played though. Willie will have drowned by
then and the game will reinitialize.

LITTLE DROPS OF WATER
Although there appears to be a lot of sea, there
are, in fact only two characters' worth in the
data table. The first occupies the eight loc-
ations from 18,206 onwards and the second
occupies the eight from 18,222 onwards.
When these two sea characters are printed
next to each other over and over in alternating
lines, you rapidly build up an ocean.

As the sea is going to be printed on the
screen a character at a time, the CHARPR
routine is going to be used again. So the
relevant parameters have to be loaded into the
correct registers. As always, U carries the
pointer to the first byte of data, so the data
itself acts as the user stack. And X carries the
screen position the data is to be printed in. So

U is loaded up with the address of the first
byte of the first sea character.

The variable in 18,246 is the so-called sea
delay. This controls the movement of the sea.
Bit two is used as a flag to tell the processor
which sea character was used for the last line.

The contents of the sea delay are loaded
into the accumulator and the instruction BITA
2 isolates that particular bit. If it is not set,
the BEQ instruction which follows it jumps
the processor over the next instruction. But if
it is set, the jump is not made and U is loaded
with the address of the beginning of the
second sea character.

SEE SEA
X is loaded with the contents of memory
location 18,247. This location carries the
position of the sea that is about to be printed
and it has been initialized by the routine in
part seven of Cliffhanger on page 1104 of
INPUT to the bottom left-hand corner of the
screen.

A is loaded with 16. This is going to be
used as a counter to count across the 16 sea
characters that are going to be printed.

This counter needs to be preserved intact
while the processor goes off to perform the
CHARPR routine, so A is pushed onto the
stack. The data for the sea character is going
to be used over again, too, because each line of
the sea is made up of the same sea character—
so U is pushed onto the stack as well. The

CHARPR routine is then called and the eight
bytes of the appropriate sea character are
printed up on the correct place on the screen.
CHARPR automatically updates the X regis-
ter so that it is ready to print the next
character alongside the last on the screen.

The data pointer is moved back to the
beginning of the appropriate sea character—it
has been incremented during the CHARPR
routine—by pulling it off the stack. And the A
counter is pulled off the stack again too.

The counter is then decremented and
if it hasn't counted down to 0, the BNE
instruction loops back so that the
processor prints the sea character
in the next screen position along that
particular line.

When the counter in A has counted down
to 0, the processor drops out of the loop and
proceeds with the next instruction.

SEA SAW
The sea delay is then decremented. If it
has not counted down to zero,
the BNE instruction jumps the
processor over the next fQ30""
instructions to the end
of the routine
where it returns.

If it has counted down to zero, the sea delay
is reset to 10. The position pointer is loaded
back into X, and 256 is subtracted from it.
The result is stored back in the sea pointers
location, 18,247. So next time this routine is
called, the sea is moved up one row.

Increase the musical power of your
computer by reducing the data
needed for your tunes* You can use
the technique to compress other
types of data too

A piece of music, or even a simple tune,
played on your computer can be an exhilarat-
ing experience—particularly if you have com-
posed and programmed the tune yourself.
Naturally, there are difficulties that you must
overcome, not the least of which is the large
mass of data—perhaps two or three screens
full—required to program a typical tune.
Besides being tedious to type in, this occupies
a lot of memory. This article shows some
simple data compression techniques that let
you store tunes within BASIC programs,
without taking up large amounts of user
RAM.

Of course, the need to squeeze the max-
imum amount of data into the smallest
amount of space isn't limited to the gene-
ration of tunes. The techniques described in
this article can be used for compressing data

used in other applications—provided the data
is either repetitive or uses only a restricted
range of values.

SINGING THE BLUES
Whatever the musical style, most tunes have a
similar structure which lends itself to data
compression. Suppose you wanted to play a
simple 12-bar blues tune, for instance. You
would probably write a program in which the
pitch values are stored sequentially within
DATA statements. Enter and RUN the first
program to hear such a tune:

10 LET T=.2
20 RESTORE 100
30 READ D
50 IF D=255 THEN GOTO 20

60 BEEP T,D
70 GOTO 30
100 DATA 12,12,15,16,19,19,21,19
110 DATA 12,24,22,21,19,17,16,14
120 DATA 12,12,15,16,19,19,21,19
130 DATA 12,24,22,21,19,17,16,14
140 DATA 17,17,20,21,24,24,26,24
150 DATA 17,24,22,21,19,17,16,14
160 DATA 12,12,15,16,19,19,21,19
170 DATA 12,24,22,21,19,17,16,14
180 DATA 19,19,23,24,26,26,24,23
190 DATA 17,17,20,21,24,24,20,21
200 DATA 12,12,15,16,19,19,21,19
210 DATA 12,24,22,21,19,17,16,14
2

X

2ATA 255

:[]

0 D

10 S = 54272: FORZ = STOS + 24: PO KEZ,0:
N EXTZ:T =100

COMPRESSING A TUNE
PROGRAMMING A

12-BAR BLUES
SPLITTING A TUNE INTO

SHORT SECTIONS

FINDING REPETETIVE
MINI TUNES

USING LESS NOTES
ALTERING THE TEMPO
PLAYING LONG NOTES

20 P0KES + 5,0:POKES +6,240:POKE
S+24,15:RESTORE

30 READK,KK:IFK= —1THEN20
45 POKES + 4,33:POKES +11,129
50 POKES + 1,K:POKES,KK
60 FORZ = 1TOT: N EXTZ
70 POKES + 4,32:GOT030
100 DATA 8,97,8,97,9,247,10,143,12,143,12,

143,14,24,12,143
110 DATA 8,97,16,195,14,239,14,24,12,143,

11,48,10,143,9,104
120 DATA 8,97,8,97,9,247,10,143,12,143,12,

143,14,24,12,143
130 DATA 8,97,16,195,14,239,14,24,12,143,

11,48,10,143,9,104
140 DATA 11,48,11,48,13,78,14,24,16,195,16,

195,18,209,16,195
150 DATA 11,48,16,195,14,239,14,24,12,143,

11,48,10,143,9,104

160 DATA 8,97,8,97,9,247,10,143,12,143,12,
143,14,24,12,143

170 DATA 8,97,16,195,14,239,14,24,12,143,
11,48,10,143,9,104

180 DATA 12,143,12,143,15,210,16,195,18,
209,18,209,16,195,15,210

190 DATA 11,48,11,48,13,78,14,24,16,195,16,
195,13,78,14,24

200 DATA 8,97,8,97,9,247,10,143,12,143,12,
143,14,24,12,143

210 DATA 8,97,16,195,14,239,14,24,12,143,
11,48,10,143,9,104

999 DATA —1,0

RINK
10 S= 36874: FORZ = STOS + 4: POKEZ,0:

NEXTZ:T = 200
20 POKES +4,15:RESTORE
30 READK:IFK= —1THEN20
50 FOR Z= 0T02:POKES + Z,K:NEXTZ
60 FORZ = 1TOTN EXTZ
70 FORZ= 0T02:POKES +Z,0:NEXTZ:GOTO

30
100 DATA 173,173,185,189,200,200,206,200
110 DATA 173,214,208,206,200,192,189,181
120 DATA 173,173,185,189,200,200,206,200
130 DATA 173,214,208,206,200,192,189,181
140 DATA 192,192,203,206,214,214,218,214
150 DATA 192,214,208,206,200,192,189,181
160 DATA 173,173,185,189,200,200,206,200
170 DATA 173,214,208,206,200,192,189,181
180 DATA 200,200,211,214,218,218,214,211
190 DATA 192,192,203,206,214,214,203,206
200 DATA 173,173,185,189,200,200,206,200
210 DATA 173,214,208,206,200,192,189,181
999 DATA-1

11211
10 T=4
20 RESTORE100
30 READD
50 I FD = 255TH EN 20
60 SOUND1,-15,D,T:SOUND1,0,0,1
70 GOT030
100 DATA 100,100,112,116,128,128,136,128
110 DATA 100,148,140,136,128,120,116,108
120 DATA 100,100,112,116,128,128,136,128
130 DATA 100,148,140,136,128,120,116,108
140 DATA 120,120,132,136,148,148,156,148
150 DATA 120,148,140,136,128,120,116,108
160 DATA 100,100,112,116,128,128,136,128

170 DATA 100,148,140,136,128,120,116,108
180 DATA 128,128,144,148,156,156,148,144
190 DATA 120,120,132,136,148,148,132,136
200 DATA 100,100,112,116,128,128,136,128
210 DATA 100,148,140,136,128,120,116,108
220 DATA 255

it NI
1 0 T=3
20 RESTORE
30 READD
50 I FD = 255TH E N20
60 SOUNDD,T
70 GOTO 30
100 DATA 175,175,189,193,204,204,210,204
110 DATA 175,218,213,210,204,197,193,185
120 DATA 175,175,189,193,204,204,210,204
130 DATA 175,218,213,210,204,197,193,185
140 DATA 197,197,207,210,218,218,223,218
150 DATA 197,218,213,210,204,197,193,185
160 DATA 175,175,189,193,204,204,210,204
170 DATA 175,218,213,210,204,197,193,185
180 DATA 204,204,216,218,223,223,218,216
190 DATA 197,197,207,210,218,218,207,210
200 DATA 175,175,189,193,204,204,210,204
210 DATA 175,218,213,210,204,197,193,185
220 DATA 255

The data for the Commodore is twice as long
as for other micros, because each note is
specified by two pitch values—one for low
byte and another for high byte.

The variable T sets a time factor to control
the speed of the tune. Line 20 sets the data
pointer to the first line of data, then the
program loops between Lines 30 and 70
reading the pitch values—each of the num-
bers in the DATA statements—in turn into the
sound statement at Line 60 (40 to 70 on the
Commodores). Notice that, on the Acorns,
there is a second sound statement which plays
a note of zero loudness and zero pitch for a
twentieth of a second. This 'dummy note' is a
period of silence to separate the true notes.
Line 50 detects the end of the tune, which is
marked by the arbitary value 255; on the
Commodores Line 30 detects value —1
instead.

If you wanted to program a rest at some
point in the tune, you could insert another
arbitary value (254, say) and include a test at

Line 40 to detect it. If the test was successful
the program would branch to a line that set a
delay, then returned control to Line 30 to
continue the tune.

As the program stands, it has the effect of
passing pitch values to the sound-handling
section of the micro, where they are executed
sequentially—as they appear in the data.

Although this program works quite adequ-
ately you can see from the listings that, even
for this short tune, a large amount of data is
required. This is tedious to type in, and takes
up more than its fair share of memory. It
brings another drawback too: while the data
statements are being processed (that is, while
the tune is being played) your micro can't get
on with any other task.

Some micros, such as the Acorns, partly
solve this problem by having a sound buffer
which can hold data for up to six sound

statements. If the buffer has room for all the
data used in a particular tune then the
computer is free to continue with any other
processing—but even here, while there is
sound to be processed, the micro must attend
to this task. And a sound buffer does nothing
to relieve the tedium of entering the data, or
to reduce the amount of memory needed*

So what's really needed, apart from the
obvious solution of writing very short tunes,
is to find some way of compacting or com-
pressing the data to take up as little space, and
make it quick to enter and process*

GETTING THE TREND
Data compression relies on your data having
some underlying trend or trends. The more of
these trends that you can recognize, the
greater can be the degree of compression.

The first step in analysing trends within

the data for a tune is to actually play or listen
to the tune on an instrument, and try to
identify passages that sound alike. Write the
tune down on paper, ignoring staves, time
signatures and other musical conventions,
and concentrating on the pitch of each note.

It is a simple matter to write the letter of
each note sequentially—as they occur within
the tune—in a straight line. That is fine if
each note lasts for the same length of time—
one beat, say. But what happens if any note
lasts for more than one beat? The program is
much simpler if we assume that each note lasts
for the same period—that is, if T is given a
constant value. If the value of T is allowed to
change for each note, then along with the
pitch you would have to store the duration of
that note, doubling the amount of data. To
take into account notes that do last for more
than one beat, you can simply enter the same

note more than once—for example, for three
beats, you would enter the same pitch value
three times.

When you have written down the blues
tune, it should look like the values in Table 1
below.

Table 1
G, G, A # B, D, D, E, D, G,
G, F, E, D, C, B, A,
G, G, A # 1 B, D, D, E, D, G,
G2 F, E, D, C, B, A,
C, C, D #, E, G2 G2 A2 G2 CI
G2 F, E, D, C, B, A,
G, G, A# 1 B, Di D, E, DI G,
G2 F, El D, C1 B1 A,
D, D, F#, G2 A2 A2 G2 F # I
C, GI D# 1 E, G2 G2 D# 1 E1
G, G, A # B, D, D, E, D, G,
G2 F, E, D, C, B,

If you study the Table, you'll be able to see
that the whole tune is made up from just five
different series of notes, or 'mini' tunes, most
of them repeated several times as shown in the
next Table, below.

Table 2
T, = G, G, A # B, D, D, E, 	D, 	G,
T2 = G2 F, E, 	D, C, B, A,
T,= C, C, D4e, E, G2 G2 A2 	G2 	C,
T,= D, D, F#, G2 A2 A2 G2 F# 1

 T5 = C, C, D46 , E, G, G2 D#, E,

Now you have a method for data
compression—instead of entering all the
notes of each of the mini tunes every time they
occur you enter the notes of each mini tune
only once, together with a short series of
codes describing the sequence in which the
mini tunes are to be played. The trade-off in

this saving of memory is that the program
becomes longer, as it has to work out which
data to process at any one time. The second
program shows this:

a
10 LET C=0: LET T= .2
20 RESTORE 100
30 FOR N=1 TO C +1: READ P:

NEXT N
40 IF P=0 THEN GOTO 10
50 RESTORE P
60 READ N
70 IF N> =255 THEN LET C=C+1:

GOTO 20
80 BEEP T,N
90 GOTO 60
100 DATA 110,120,110,120,130,120,110,

120,140,150,110,120,0
110 DATA 12,12,15,16,19,19,21,19,12,255

120 DATA 24,22,21,19,17,16,14,255
130 DATA 17,17,20,21,24,24,26,24,17,255
140 DATA 19,19,23,24,26,26,24,23,255
150 DATA 17,17,20,21,24,24,20,21,255

1 S=54272:FORZ=STOS+24:POKEZ,0:
NEXTZ

2 POKES + 5,0:POKES +6,240:POKES
+24,15

10 C = 0:T =100
20 RESTORE
27 FORZ=1TOC+1:READP:NEXTZ
28 IFP=0THEN10
29 RESTORE:FORW=1TOP:READWW:

N EXTW
30 READK,KK:IFK= —1THENC=C+1:

GOT020
40 POKES +4,33
50 POKES+ 1,K: POKES,KK
60 FORZ=1TOT:NEXTZ
70 POKES +4,32:GOT030
100 DATA 13,33,13,33,49,33,13,33,69,87,13,

33,0
110 DATA 8,97,8,97,9,247,10,143,12,143,12,

143,14,24,12,143,8,97,-1,0
120 DATA 16,195,14,239,14,24,12,143,11,48,

10,143,9,104,-1,0
130 DATA 11,48,11,48,13,78,14,24,16,195,16,

195,18,209,16,195,11,48,-1,0
140 DATA 12,143,12,143,15,210,16,195,18,

209,18,209,16,195,15,210,-1,0
150 DATA 11,48,11,48,13,78,14,24,16,195,16,

195,13,78,14,24,-1,0

Ce31
1 S =36874:FORZ=STOS+4:POKEZ,0:

NEXTZ
2 POKES +4,15
10 C = 0:T = 200
20 RESTORE
27 FORZ=1TOC+1:READP:NEXTZ
28 IFP=0THEN10
29 RESTORE:FORW=1TOP:READWW:

NEXTW
30 READK:IFK= —1THENC=C+1:

GOT020
50 POKES + 2,K
60 FORZ=1TOT:NEXTZ
70 POKES + 2,0:GOT030
100 DATA 13,23,13,23,31,23,13,23,41,50,13,

23,0
110 DATA 173,173,185,189,200,200,206,200,

173,-1
120 DATA 214,208,206,200,192,189,181,-1
130 DATA 192,192,203,206,214,214,218,214,

192,-1
140 DATA 200,200,211,214,218,218,214,211,

—1
150 DATA 192,192,203,206,214,214,203,206,

—1

1E1
10 c= 0:T =4
20 RESTORE 100
30 FOR N=1 TO C+1:READ P:NEXT
40 IF P=0 THEN 10
50 RESTORE (100+P)
60 READ N
70 IF N=255 THEN C=C+1:GOTO 20
80 SOUND1,-15,N,T:SOUND1,0,0,1
90 GOTO 60
100 DATA 10,20,10,20,30,20,10,20,40,50,

10,20,0
110 DATA 100,100,112,116,128,128,136,128,

100,255
120 DATA 148,140,136,128,120,116,108,255
130 DATA 120,120,132,136,148,148,156,148,

120,255
140 DATA 128,128,144,148,156,156,148,144,

255
150 DATA 120,120,132,136,148,148,132,136,

255

1 DIMA(5,1):FORK=1T013:READP:NEXT:
GOTO3

2 READ P:IF P < > 255 THEN2
3 N=N+1:A(N,0)=PEEK(51):A(N,1)= PEEK

(52):IF N<5 THEN2
10 C = 0:T = 3
20 RESTORE
30 FORN =1 TO C+1:READ P:NEXT
40 IF P=0 THEN 10
50 POKE51,A(P,0):POKE52,A(P,1)
60 READ N
70 IF N=255 THEN C=C+1:GOT020
80 SOUND N,T
90 GOT060
100 DATA 1,2,1,2,3,2,1,2,4,5,1,2,0
110 DATA 175,175,189,193,204,204,210,204,

175,255
120 DATA 218,213,210,204,197,193,185,255
130 DATA 197,197,207,210,218,218,223,218,

197,255
140 DATA 204,204,216,218,223,223,218,216,

255
150 DATA 197,197,207,210,218,218,207,210,

255

Notice that the amount of data required to
play the blues tune is much reduced—on the
Spectrum, for example, from 97 bytes to 59
bytes. RUN the program and verify that the
tune is the same as that played by the first
program. Spectrum users will note that the
timing of the tune is a little odd, and more will
be said about this later.

The data for the mini tunes is at Lines 110
to 150, and the data for the master sequence—
the order in which the mini tunes are played—
is at Line 100. The loop at Line 30 sets P

within the master sequence to select which
mini tune is to be played. In fact, the master
sequence is a list of line numbers (or numbers
that combine with an offset to give line
numbers) where the data for mini tunes is
listed.

Once the mini tune to be played is cal-
culated, Line 50 sets the data pointer to the
start of the appropriate line of data. The
Dragon, Tandy and Commodores do not
allow RESTORE to a line within a block of data,
but only to the first line of data. So to point to
the data for a particular mini tune, the
Commodores use FOR ... NEXT loops (Lines
27 and 29). On the Dragon and Tandy, the
data points are recorded at Line 3, then
recalled at Line 50 to play each mini tune.

Line 10 sets C to count the number of mini
tunes that have been played. The duration of
a single note is set by T (except on the
Commodores) which controls the overall
tempo of the tune. Line 40 checks for the last

On my Acorn computer, if I
enter the same pitch value more
than once in a row I get two
distinct notes, rather than a
single note of double duration.
How can I cure this?
The problem is caused by the dummy
note which is inserted to prevent
successive notes being played too quickly
and merging into one indistinct sound.
The answer is to use a pitch value of 256
greater than the actual value of the note
you want played. By inserting a test to
check for values greater than 256 (as was
mentioned for values of 254 and 255)
you can branch the program to a routine
that removes the dummy note and allows
the sounds to merge into one, longer
note.

Why use a value exactly 256 greater
than the note you want? The Acorns
recognize values over 256 as illegal—but
instead of issuing an error message, they
subtract 256 from the value repeatedly
until the remainder is less than 256, then
play the note associated with this
number. For example, if you want to
play a note of pitch 100 enter it as pitch
356—the Acorn will subtract 256 from
the entered number and play a note
of pitch 100, which is what
you really
wanted.

mini tune, which is marked by 0 at Line 100.
The end of each mini tune is marked by 255.
After each has been played, the program loops
back to read the master sequence again to get
the line number of the next tune.

There are many ways of splitting a tune
into a master sequence and mini tunes.
Generally, the shorter the mini tunes, the
longer will be the master sequence. You
should aim for a balance in which the mini
tunes are small, but not so small that the
advantage of using the system is lost by
increasing the size of the master sequence too
much.

DIVIDE AND CONQUER
The second data compression technique is
even more efficient. It relies on the fact that
although a large number of notes is available
on some micros—typically 256—only a few of
these are used in any one tune. And it is
wasteful to store these using a system that is
designed to store many more different values.

Each memory location of your eight-bit
micro can store a decimal number in the range
0 to 255. If you can restrict the range of
numbers you want to store, then you may be
able to pack two of them—one into four bits—
into each location. For example, the eight-bit
binary number 10100010 can be thought of
as either the single decimal number 162, or
the two decimal numbers 10 (from the lef-
tmost four bits 1010) and 2 (from the right-
most four bits 0010).

Halving the number of bits available for
storing each number restricts the range of
decimal numbers you can store quite
drastically—to between 0 and 15. But this
may be sufficient—the number of different
notes in a simple tune often doesn't exceed 16.

To make use of this arrangement for data
compression, you should restrict the number
of different notes you store to 15, leaving the
sixteenth combination as a control code. As
before, shortening the data generally in-
creases the amount of program you need to
process it. In this case, the program has to
work out which pitch value to use for each of
the abbreviated, coded forms it finds in the
DATA statements. And you have to do quite a
lot of work in preparing the data for the
program by working out how many different
notes are used in the tune, then arranging
them in order of ascending pitch starting with
the lowest note of the first octave—in this case
G1 . Now work out what the coded forms of
the data should be. For the tune you have
played, there are 12 notes: G 1, Al, A#„ B„
C1, D„ D # „ E„ F„ F # „ G, and A,. Enter
and RUN the third program to see how the
listing progresses:

a
12 GOSUB 1000: LET T = .15: LET NT= 130:

LET MS=170: LET MT = 210:GOSUB 300
90 STOP
100 DATA 12,14,15,16,17,19,20,21,22,23,24,

26,0,0,0,0
200 DATA 1,2,1,2,3,2,1,2,4,5,1,2,0
210 DATA 0,35,85,117,15,255
220 DATA 168,117,67,31,255
230 DATA 68,103,170,186,79,255
240 DATA 85,154,187,169,255
250 DATA 68,103,170,103,255
310 RESTORE NT
320 FOR N =23410 TO 23425
330 READ X: POKE N,X: NEXT N
345 LET NM =0
350 RESTORE MS: LET HL= 23426
360 READ X
365 IF X> NM THEN LET NM =X
370 IF X=0 THEN GOTO 400
380 POKE HL,X: LET HL= HL +1:

GOTO 360
400 POKE HL,X: LET HL= HL +1
401 LET X= HL: GOSUB 600
402 POKE 23403,LSB
403 POKE 23404,MSB
430 RESTORE MT
440 FOR N=1 TO NM
450 READ X
460 IF X=255 THEN GOTO 500
470 POKE HL,X: LET HL= HL + 1:

GOTO 450
500 POKE HL,X: LET HL= HL +1
510 NEXT N
511 RANDOMIZE USR 23371
512 POKE 23409,0
530 LET X= USR 23296
540 IF X=255 THEN RETURN
550 BEEP T,X: GOTO 530
600 LET MSB = INT (X/256)
610 LET LSB =X— (MSB*256): RETURN
1000 RESTORE 2000: LET TO = 0: LET

L = 2000
1030 FOR N =23296 TO 23296+111

STEP 8
1040 FOR K=0 TO 7: READ A: LET

TO = TO +A: POKE K+ N,A: NEXT K
1050 READ A: IF A< >TO THEN

GOTO 1080
1060 LET L= L +10: LET TO =0: NEXT N
1065 RESTORE : RETURN
1080 PRINT "DATA ERROR AT LINE ";L:

STOP
2000 DATA 42,109,91,235,42,111,91,58,779
2010 DATA 113,91,70,183,202,24,91,175,949
2020 DATA 8,35,62,15,160,195,36,91,602
2030 DATA 61,1,8,203,56,203,56,203,791
2040 DATA 56,203,56,120,254,15,202,65,971
2050 DATA 91,34,111,91,235,34,109,91,796
2060 DATA 8,50,113,91,33,114,91,22,522

More than one tune
As an exercise, try to code additional
tunes for the last program. At first, aim
to add about three tunes. Work out the
master sequences and mini tune compo-
nents, then store them in data state-
ments. You will need to reinitialize the
array variables—X()— for the master
note table of each tune before it is to be
played. Some renumbering might be
necessary.

2070 DATA 0,8,95,25,126,6,0,79,339
2080 DATA 201,26,19,183,194,81,91,1,796
2090 DATA 255,0,201,17,130,91,195,65,954
2100 DATA 91,71,42,107,91,43,62,255,762
2110 DATA 16,5,35,175,195,10,91,35,562
2120 DATA 190,194,103,91,195,88,91,35,987
2130 DATA 195,96,91,0,0,0,0,0,382

10 S=54272:FORZ=STOS+24:POKEZ,0:
NEXTZ

20 POKES + 5,0:POKES +6,240:POKE
S + 24,15

23 DIMX(16),XX(16):RESTORE:FORN = 1TO
16:READX(N),XX(N):NEXTN

25 C = 0:T =100
26 RESTORE:FORW = 1T032:READVVVV:NEXT

27 FORZ =1TOC +1:READP:NEXTZ
28 IFP=0THEN25
29 RESTORE:FORW =1TOP + 40:R EADVVW:

NEXTW
50 READN:SS=N
60 N=INT(N/16)
70 IFN=15THENC=C+1:GOTO 26
80 GOSUB 130
90 N =SS:N =15 AND N
100 IF N=15 THEN C=C+1:GOTO 26
110 GOSUB 130
120 GOTO 50
130 POKES+ 4,33
140 POKES+1,X(N +1):POKES,XX(N +1)
150 FORZ=1TOT:NEXTZ
160 POKES + 4,32:RETURN
450 DATA 8,97,9,104,9,247,10,143,11,48,12,

143,13,78,14,24,14,239,15,210,16,195
460 DATA 18,209,0,0,0,0,0,0,0,0
1000 DATA 5,10,5,10,15,10
1010 DATA 5,10,20,25,5,10,0
1110 DATA 0,35,85,117,15
1120 DATA 168,117,67,31,255

1130 DATA 68,103,170,186,79
1140 DATA 85,154,187,169,255
1150 DATA 68,103,170,103,255

10 S=36874:FORZ=STOS+4:POKEZ,0:
NEXTZ

20 POKES + 4,15
23 DIMX(16):RESTORE:FORN=1T016:READ

X(N):NEXTN
25 C = 0:T = 200
26 RESTORE:FORW = 1T016:READVVW: NEXT

27 FORZ = 1TOC +1:READP:NEXTZ
28 IFP=0THEN25
29 RESTORE:FORW = 1TOP + 24:R EADVVW:

NEXTW
50 READN:SS=N
60 N=INT(N/16)
70 IF N=15 THEN C=C+1:GOTO 26
80 GOSUB 130
90 N = SS:N =15 AND N
100 IF N=15 THEN C=C+1:GOTO 26
110 GOSUB 130
120 GOTO 50
130 POKES + 2,X(N +1)
150 FORZ = 1TOT: N EXTZ
160 POKES+ 2,0:RETURN
450 DATA 173,181,185,189,192,200,203,206,

208,211,214,218,0,0,0,0
1000 DATA 5,10,5,10,15,10
1010 DATA 5,10,20,25,5,10,0
1110 DATA 0,35,85,117,15
1120 DATA 168,117,67,31,255
1130 DATA 68,103,170,186,79
1140 DATA 85,154,187,169,255
1150 DATA 68,103,170,103,255

10 DIM X(16):RESTORE450: FOR N=1 TO
16:READ X(N):NEXT

20 C = 0:T =4
30 RESTORE 1000:FOR N=1 TO C+1:READ

P:NEXT:IF P=0 THEN 20
40 RESTORE (1100+P)
50 READ N:S=N
60 N=N ❑ DIV 16
70 IF N=15 THEN C=C+1:GOTO 30
80 PROCSO
90 N=S ❑ MOD 16
100 IF N=15 THEN C=C+1:GOTO 30
110 PROCSO
120 GOTO 50
130 DEF PROCSO:SOUND1,-15,X(N + 1),T:

SOUND1,0,0,1:ENDPROC
450 DATA 100,108,112,116,120,128,132,136,

140,144,148,156,0,0,0,0
1000 DATA 10,20,10,20,30,20
1010 DATA 10,20,40,50,10,20,0
1110 DATA 0,35,85,117,15
1120 DATA 168,117,67,31

1130 DATA 68,103,170,186,79
1140 DATA 85,154,187,169,255
1150 DATA 68,103,170,103,255

10 DIMA(5,1),X(16):FORK=1T016:READX
(K): NEXT:A(0,0) = PEEK(51):A(0,1) =
PEEK(52)

15 FORK= 1T013:READP:NEXT:GOT030
20 FORK= 1T05:READP:NEXT
30 N = N +1:A(N,0)=PEEK(51):A(N,1)=

PEEK(52):IF N <5 THEN20
40 C = 0:T = 3
50 POKE51,A(0,0):POKE52,A(0,1):

FORN =1TO C+1:READ P:NEXT:
IF P=0 THEN 40

60 POKE51,A(P,0):POKE52,A(P,1)
65 READ N:S=N
70 N = INT(N/16)
75 IF N=15 THEN C=C+1:GOTO 50
80 GOSUB 130
90 N=S:N=15ANDN
100 IF N=15 THEN C=C+1:GOTO 50
110 GOSUB 130
120 GOTO 65
130 SOUND X(N+1),T:RETURN
450 DATA 175,185,189,193,197,

204,207,210,213,216,218,223,0,0,0,0
1000 DATA 1,2,1,2,3,2
1010 DATA 1,2,4,5,1,2,0
1110 DATA 0,35,85,117,15
1120 DATA 168,117,67,31,255
1130 DATA 68,103,170,186,79
1140 DATA 85,154,187,169,255
1150 DATA 68,103,170,103,255

The pitch values of these notes are coded in
the data statement at Line 450 (100 on the
Spectrum). Note that on all except the Com-
modore 64, there must be 16 items at this line.
The Commodore 64 listing has 32 items,
because two parameters specify each pitch
value. In all cases, only 12 notes are coded, so
the remaining four (or eight) spaces are filled
out with zeros. The four binary bits (called a
nybble) that make up each note of the mini
tunes are coded at Lines 1000 and 1010 (200
and 210 on the Spectrum).

To see how these values are calculated, take
mini tune T1 as an example. Label each item
in the master note sequence at Line 450 (100
on the Spectrum). The first note at this line is
0, the second is 1, the third is 2, and so on to
the last note, which is 15. Now write T1 in
terms of these labels, so that Ti = 0, 0, 2, 3, 5,
5, 7, 5, 0, 15. Note that the 15 at the end of the
list is used as an 'end of mini tune' indicator.
Each of these values is stored in one nybble,
so combine them in pairs to make up bytes.

The first nybble pair is 0 and 0, which in
binary gives 0000 and 0000. When com-

bined, the result is decimal 0. So the first item
of data in mini tune T1 at Line 1110 (210 on
the Spectrum) is 0. The next two items in T1
are 2 and 3. These are 0010 and 0011, which
combine to give 00100011 in binary, or
decimal 35. This is the second item of data in
T1 at Line 1110 (210 for the Spectrum).
Similarly, T2 becomes 10, 9, 7, 5, 4, 3, 1, 15.
So 10 and 9 combine as 1010 and 1001 in
binary, or decimal 168-the first value for T2
at Line 1110 (220 on the Spectrum). This
method is continued until all the data for the
mini tunes (Lines 1110 to 1150 or 210 to 250
on the Spectrum) are calculated. As in the
previous programs, the master sequence
(Lines 1000 and 1010 or 200 for the Spec-
trum) is made up of values that point to the
lines at which the required mini tune data is
listed-in the order that they are played.

SPOT THAT TUNE
Another important section of the program
deals with extracting the encoded nybbles
from the one-byte decimal numbers. On the
Spectrum, decoding is achieved by storing
the byte being processed in a variable (Line
401), then calling a subroutine (Lines 600
and 610), which separates the byte into
nybbles. After further processing, these ny-
bbles are used with data from the master
sequence to sound a note (Line 550).

On the other micros, decoding is achieved
at Lines 50 to 100. Line 50 stores the value of
the byte being processed (N). Line 60 extracts
the left-hand nybble, then Line 70 checks for
the end of a mini tune. Line 80 calls a
subroutine to play the note encoded by this
nybble, and Line 90 extracts the right-hand
nybble, using logical AND. As before, the note
is sounded. Notice that the byte being pro-
cessed is first stored, otherwise it could not
yield the second nybble.

When this program is RUN, users of the
Spectrum should notice that the disturbing
irregularity in the tempo, caused by the
compression in the second program, is cured.
The defect was due to the extra processing
required to run the BASIC program while the
data pointers were realigned. The last
program reduces this extra processing time by
a section of machine code (Lines 1000 to
2130), which is the reason that the program is
longer, with different line numbers.

To alter the speed of the tune change the
value of the variable T. This is set in Line 12
on the Specrum, Line 25 on the Commoores,
Line 20 on the Acorn and Line 40 on the
Dragon and Tandy. However you should be
aware that the time lag between executing one
mini tune and finding the next becomes more
marked as the value of T is decreased.

The game is initialized*
Freddy is waiting on the
ladder, his arrows are sharpeffri,.
the balloons are inflated,
and the spider is salivating*

In part one of Freddy and the spider from
Mars you entered the initialization and
graphics routines. Now lace them together by
adding animation routines.

M
Now add these lines, and you'll have the
complete game:

THE MAIN LOOP

a
10 CLEAR 65287
20 GOSUB 1000
30 GOSUB 3000
50 IF ax < >29 THEN GOSUB 300
70 GOSUB 400
90 GOSUB 500
100 GOSUB 200: IF dead = 0 THEN GOTO 50

10 C LS3: PR 1 NT@266," nitializi ng";:SC R EEN
0,1

20 GOSUB 1000
25 GOSUB 1600
30 GOSUB 3000
50 IF AX < >29 THEN GOSUB 300
70 GOSUB 400
90 GOSUB 500
100 GOSUB 210:IF DD= 0 THEN 50

The game is structured so that the graphics
are defined and the high score is reset.

The main loop itself extends from Line 50
to Line 100, and continues all the time
Freddy remains alive. The loop involves
moving the arrow, if it has been fired, moving
the spider, moving Freddy according to the
key presses, and moving the balloons. Each of
the relevant routines updates the variables.

FEEDING TIME

105 LET s(xinc) =1
110 FOR x =s(xpos) TO 29: GOSUB 500:

NEXT x
120 LET s(yinc) =1: LET s(xinc) = 0
125 FOR y=s(ypos) TO 19
130 IF y= my AND ax=29 THEN POKE

23607,60: PRINT AT my +1,29;"171":

POKE 23607,252
140 GOSUB 500
150 NEXT y
160 POKE 23607,60: PRINT AT 10,0; INK 2;

PAPER 7; BRIGHT 1; FLASH 1;"You're
dead! Another Game(Y/N)?";: POKE
23607,252

165 LET a$ =1NKEY$: IF a$ = "" THEN GOTO
160

170 IF a$="y" OR a$ ="Y" THEN GOTO 30
175 IF a$< >"n" AND a$< >"N" THEN

GOTO 160
180 POKE 23607,60: CLS : STOP

14_Z
105 S(XI) =1
110 FOR X =S(XP) TO 29:GOSUB 500:NEXT X
120 S(YI) =1:S(X1) = 0
125 FOR Y = S(YP) TO 19
130 IF Y = MY AND AX = 29 THEN PUT(232,

(MY +1)*8) — (239,(MY +1)*8 + 7),S1,
PSET

140 GOSUB 500
150 NEXT Y
160 FOR SL =180 TO 160 STEP —1:SOUND

SL,1:NEXT:CLS:PRINT@256,"YOU'RE
DEAD! ANOTHER GAME (Y/N)?"

165 A$ =1NKEY$:IF A$="" THEN 165
170 IF A$ ="Y" THEN 30
175 IF A$< >"N" THEN 160
180 CLS:END

After all the doors have been removed, dead
(DD) is set to one, and Lines 105 to 180 are
executed.

This routine moves the spider horizont-
ally, until it is above the hapless Freddy, then
vertically, chomping both him and the ladder.
The player is then given the option of another
go. In the Spectrum program, POKEing 60
into location 23607 restores the character set
pointer, so the full character set may be used.

INFLATION SOARS

210 LET b(count) = b(count) —1: IF b(count)
< >0 THEN GOTO 280

220 LET b(count) = b(maxcount): PRINT AT
b(ypos) +1,b(xpos);"0 	LET
b(ypos) = b(ypos) —1: IF b(ypos) =4

THEN GOSUB 600: POKE
23607,60:PRINT AT 1,10+ (3 —
props)*9;"";AT 2,10 + (3 —
props)*9;" ❑ ":POKE 23607,
252: LET props = props-1

225 IF props= 0 THEN LET dead =1
230 IF ((ay < > b(ypos) AND ay < > b

(ypos) +1) OR (ax < b(xpos) —1 OR ax > b
(xpos) +1)) THEN GOTO 250

240 LET score =score + b(points): GOSUB
600: IF score > hiscore THEN LET hiscore =
score: POKE 23607,60: PRINT AT 0,23;
INK 0; PAPER 6;hiscore: POKE 23607,252

245 GOTO 380
250 GOSUB 4300
280 RETURN

210 B(CT) = B(CT) — 1:IF B(CT) < > 0 THEN
280

220 B(CT) = B(MC)
221 B(YP)= B(YP) —1:IF B(YP)=4 THEN

X2= B(XP) * 8:Y2= B(YP) * 8 + 8:PUT(X2,
Y2) — (X2 +15,Y2+15),SP,PSET:GOSUB
600:X2 = (10 + (3— PP)*9)*8: PUT
(X2,8) — (X2 + 7,15),S1,PSET:PUT(X2,
16) — (X2 + 7,23),S1,PSET:PP = PP-1

225 IF PP= 0 THEN DD=1
230 IF ((AY < > B(YP) AND

AY < > B(YP) +1) OR (AX < B(XP) —1
OR AX> B(XP) +1)) THEN 250

240 SC =SC + B(P0):X2= B(XP)*8:Y2= (B
(YP) +1)*8:PUT(X2,Y2) — (X2 +15,Y2+
15),SP,PSET:GOSUB 600:IF SC > HS
THEN HS =SC:GOSUB 1700

245 GOTO 400
250 GOSUB 4300
280 RETURN

b(count) (B(CT)) and b(maxcount) (B(MC)) are
the most important elements of the balloon
array. Each time the subroutine is called, Line
210 decrements b(count); when this reaches
zero, the balloon will move. After the balloon
has been moved, Line 220 copies the number
in b(maxcount) into b(count). The balloon can
be made to move at different speeds by simply
varying the value of b(maxcount). Line 220
checks whether the balloon has been burst or
if it has reached the top of the screen.

If the balloon has been burst, the score is

COMPLETING THE GAME
THE MAIN LOOP

HAVING FREDDY FOR
FOR BREAKFAST

MOVING THE BALLOONS

FIRING THE ARROWS
UP AND DOWN THE LADDER

ANIMATING THE MARTIAN
SPIDER

BURSTING BALLOONS

increased; if it has reached the top, one door is
removed. If all the doors have been removed,
dead is set to one.

TWANG!!

300 PRINT AT ay,ax;" LI ❑ ": LET ax =ax —1:
IF ax <0 THEN LET ax =29: PRINT AT
my +1,29; "e": LET ay= my +1: RETURN

310 IF ((ay= b(ypos) OR ay= b(ypos) +1)
AND (ax =-- b(xpos) OR ax = b(xpos) +1))
THEN LET score = score + b(points):
GOSUB 600: IF score> hiscore THEN LET
hiscore = score: POKE 23607,60: PRINT AT
0,23; INK 0; PAPER 6;hiscore: POKE
23607,252

330 IF ax< >29 THEN GOSUB 4100
340 RETURN

MIA
300 PUT(AX*8,AY*8) — (AX*8 + 15,AY*8 + 7).

S2,PSET:AX= AX —1:IF AX <0 THEN
AX = 29: PUT(232,(MY + 1) * 8) — (239,
(MY + 1) * 8 + 7),E,PSET:AY = MY + 1:
RETURN

310 IF ((AY = B(YP) OR AY = B(YP) +1)
AND (AX = B(XP) OR AX = B(XP) +1))
THEN SC =SC + B(P0):X2 = B(XP) * 8:
Y2 = B (YP) * 8 + 8: PUT(X2,Y2) — (X2 + 15,
Y2 + 15),SP,PSET:GOSUB 600:IF SC > HS
THENHS= SC:GOSUB 1700

330 IF AX < > 29 THEN GOSUB 4110
340 RETURN

This is the routine which animates the arrow.
The old image is blanked out, and the new
one PRINTed at the next position—deter-
mined by variable ax(AX). ax is decremen-
ted in Line 300 and, to prevent the arrow
from being PRINTed off the screen, whenever
ax falls below zero it is reset to 29. When ax
has the value 29, the arrow is back with
Freddy and can be fired using SPACE .

If the value of ax is 29, no balloons can be
burst, so the subroutine is abandoned. If the
arrow has been fired—ax < > 29—then Line
310 checks if the arrow has hit the balloon,
and increases the score if it has. If a balloon
has burst, then the subroutine at Line 600—
the balloon-bursting subroutine—is called.

Line 330 calls the subroutine which draws
the arrow at Freddy's position, if ax doesn't
indicate that the arrow is already with Freddy.

TAKING STEPS

400 LET a$=1NKEY$: IF a$="" THEN
RETURN

410 IF a$="Z" OR a$"z" THEN GOTO 450
420 IF a$="c" OR a$="C" THEN GOTO

440
430 IF a$< >"0" THEN RETURN
432 IF ax< >29 THEN RETURN
434 LET ax= 28: PRINT AT ay,29;"

RETURN
440 IF my=19 THEN RETURN
445 PRINT AT my,30; INK 6;"k1": LET

my = my +1:: PRINT AT ay,29;" ❑ ": IF
ax=29 THEN LET ay = ay +1

446 GOTO 470
450 IF my =5 THEN RETURN
460 PRINT AT my + 2,30; INK 6;"k1": LET

my =my —1: PRINT AT ay,29;" ❑ ": IF
ax=29 THEN LET ay =ay-1

470 GOSUB 4000: RETURN

Tandy owners should change the 223 in Lines
410, 420 and 430 to 247.

400 IF PEEK(337) = 255 THEN RETURN
410 IF PEEK(341) =223 THEN 450
420 IF PEEK(342) =223 THEN 440
430 IF PEEK(345) < >223 THEN RETURN
432 IF AX< >29 THEN RETURN
434 AX=28:PUT(232,AY*8) — (239,AY*8 + 7),

S1,PSET:RETURN
440 IF MY=19 THEN RETURN

r445 PUT(240,MY*8)— (255,MY*8+7),KL,
PSET:MY= MY + 1:PUT(232,AY*8) — (239,
AY*8+7),S1,PSET:IF AX = 29 THEN
AY =AY +1

446 GOTO 470
450 IF MY = 5 THEN RETURN
460 PUT(240,MY*8 +16) — (255,MY*8+ 23),

KL,PSET:MY = MY —1:PUT(232,AY*8) —
(239,AY*8 +7),S1,PSET:IF AX = 29 THEN
AY = AY —1

470 GOSUB 4000:RETURN

Lines 400 to 430 read the keyboard. Lines
430 and 440 check if the space bar has been
pressed, and then if Freddy has an arrow.

As Freddy moves up and down, ladder
characters must be used to blank out either
above or below him (or the ladder will
disappear!), if ax equals 29, then the arrow
must be moved, also.

SHORT, FAT, HAIRY LEGS

500 LET temp =s(xpos)+s(xinc)
510 IF temp <1 OR temp> 8+ (3—props)*9

THEN LET s(xinc) = —s(xinc): GOTO 500
520 POKE 23607,60: PRINT AT s(ypos),

s(xpos);" ❑ 111 " ; A T s(ypos) + 1,s(xpos);
"0 ❑ ": POKE 23607,252

530 LET s(ypos)=s(ypos)+s(yinc): LET
s(xpos) = temp: LET s(picture) =
1 —s(picture):GOSUB 4200

540 RETURN

500 TE=S(XP)+S(X1)
510 IF TE <1 OR TE> 8+ (3— PP) * 9 THEN

S(XI) = —S(XI):GOTO 500
520 X2 = S(XP)*8:Y2 = S(YP)*8:PUT(X2,Y2) —

(X2 +15,Y2+15),SP,PSET

530 S(YP)=S(YP)+S(Y1):S(XP)=TE:
S(PI)=1 —S(PI):GOSUB 4200

540 RETURN

The last of the movement subroutines con-
cerns the Martian spider. To make the game
more interesting, it won't just sit there wait-
ing for its nosh, but will pace up and down
impatiently between the nearest door and the
end wall. There are two spider pictures, the
current picture number being stored in
s(picture) (S(PI)) which is manipulated in Line
530; either zero or one is produced.

Lines 500 and 510 make sure that the
spider doesn't escape from its cage before all
the doors are removed.

LIKE A LEAD BALLOON

600 PRINT AT b(ypos),b(xpos); BRIGHT 1;
INK b(colour);"gh";AT b(ypos)+1,b(xpos);
"ij"

610 POKE 23607,60
620 PRINT AT 0,14; INK 0; PAPER 6;score
630 BEEP .5,-20
635 LET bl =131 —1: PRINT AT 0,7; INK 0;

PAPER 6;b1;: IF bl = 9 THEN PRINT INK 0;
PAPER 6;" ❑ "

637 IF b1=0 THEN LET bl =15 + 5 * 1evel: LET
level = level + 1: LET props = props-1:
PRINT INK 0; PAPER 6;AT 0,7;bI;AT 0,2;
level: GOSUB 6000

640 PRINT AT b(ypos),b(xpos);" 	";AT
b(ypos) + 1,b(xpos);" ❑ 0"

650 PRINT AT ay,ax;"0 El": LET ax= 29:
LET ay = my +1

660 POKE 23607,252: GOSUB 4000: GOSUB
5000: RETURN

MIA
600 X2 = B(XP)*8:Y2 = B(YP)*8:PUT

(X2,Y2) — (X2 +15,Y2 + 15), GJ,PSET
620 COLOR0:LINE(114,2)— (150,7),PSET,BF:

NU =SC:DRAW "C1;BM114,2":GOSUB
1650

630 PLAY "V31;T200;02;BAGFEDC;01;
BAGFEDC"

635 BL= BL-1:COLOR0:LINE(58,2)— (68,7),
PSET,BF:DRAW "BM58,2;S2,C1":NU = BL:
GOSUB 1650

637 IF BL =0 THEN PP =3:LV = LV+ 1:BL =
15 + 51V:COLOR0:LINE(14,2) — (24,7),
PSET,BF:LINE(58,2) — (68,7),PSET,BF:
NU = LV:DRAW "BM14,2;C1":GOSUB
1650:GOSUB 6000:NU = BL:DRAW
"BM58,2;C1":GOSUB 1650

640 X2 = B(XP)*8:Y2 = B(YP)*8:PUT
(X2,Y2) — (X2 +15,Y2 + 15),
SP,PSET

650 PUT(AX*8,AY*8)— (AX*8+15,AY*8 + 7),
S2,PSET:AX =29:AY= MY +1

660 GOSUB 4000:GOSUB 5000:
RETURN

All that remains is to add a routine
which will burst the balloon if an arrow
is on target. The routine is very simple,
just PRI NTing the image of the burst balloon on
screen, then erasing the image. The number
of balloons remaining is adjusted, along with
the level, if necessary. The arrow will be reset
to Freddy's position, ready for him to fire at
the next balloon.

•

Entering these routines will complete the
game*

SETTING THE VARIABLES
30 B$="@AggimBC":AR$ = "DE":

E$="FGgIIIIHI":M$(1)=
"LMNIIIINO":M$(2)=
"PQgg 1111 RS"

40 S$ ="a ETUgg IIIIVWgg II
II 	XY":L(1) = 8:L(2) = 20:L(3) =32:
L=0:M =0:D =1:BL=20:BB =20:
SP = .3

50 Y$="@IgigigggigggggggfiggIg
Aggaggggigggigggigggiggg
gigg":F$(1)=")g111)":F$(2)=
"(ggli(" 11-= 0

60 SY=7:SD$="alapKg II IIJK
gg IIIIJK":KK= 0:SC=0:F= 0

70 GOTO 90

These lines simply initialize the
variables and strings needed.

THE BALLOON GOES UP
80 FOR Z=15 TO 0 STEP —1:POKE 646,Z
85 PRINTLEFT$(Y$,BY)SPC(BX)"a"E$:

NEXT Z:IF KK =1 THEN KK =0:GOTO 98
90 L=L+1:PRINT121k] 	11";L
95 IF L=4 THEN L=3:LL =1:L(3) = L(3) +3
98 BX= INT(RND(1)*25) + 1:BY = 21
99 POKE 198,0:IF L=1 THEN 150
125 PRINTLEFT$(Y$,BY)SPC(BX)"aii"B$
130 BY= BY—SP:IF BY <8 THEN PRINT

"Egiggggg."SPC(L(L)+3)F$(1):
GOSUB 6000:GOTO 80

135 PRINTLEFT$(Y$,BY)SPC(BX)"ap"B$
6000 BL= BL-1:IF BL<0 THEN BB=

BB + 5:BL= BB:SP=SP +.3
6010 PRINT"elL"SPC(10)BL"II El":

RETURN

There are four separate routines concerned
with the balloons. Lines 80 and 85 are the
balloon pop routine, which is used when an
arrow is on target. Lines 90 to 99 set the level
and the balloon location, Lines 125 to 135

animate the balloons as they float up the
screen, and finally, Lines 6000 and 6010 start
the next balloon (after popping or reaching
the cage), and increments the speed of the
balloon.

FREDDY
138 IF F = 0 THEN PRINTLEFT$(Y$,SY +1)

SPC(35)" "
140 GET A$:IF A$ ="" THEN 180
150 IF A$="gg" AND SY>8 THEN GOSUB

4000:SY =SY-1
160 IF A$="11" AND SY<20 THEN

GOSUB 4000:SY =SY +1
165 PRINTLEFT$(Y$,SY)SPC(36)S$
170 IF A$="E" AND F=0 THEN

F = 1:XX = 34:YY = SY + 1
180 IF F=0 THEN PRINTLEFT$

(Y$,SY + 1)SPC(35)" 	D"
900 GOTO 100
4000 PRINTLEFT$(Y$,SY)SPC(36)SD$:

RETURN

Lines 138 to 180 move Freddy in response to
key presses from the player. Lines 150 and
160 read the two cursor control keys, which
are used to control upwards and downwards
movement, and Line 170 checks if the space
bar has been pressed. If it has been, an arrow
is fired, and the fire flag F set.

If the player uses the cursor control keys to
move Freddy, the man-blanking routine at
Line 4000 is called so that he is animated.

STEP INTO MY PARLOUR
100 PRINT"E§1 giggl.a"SPC(M)M$

(RND(1)*2 +1)
103 IF M=36 THEN 3000
105 M=M +D:IF M<1 OR M > L(L)

THEN D = — D:GOTO 100
110 PRINT"Ing NMI a"SPC(M)M$

(RND(1)*2+1)
120 PRINT"g Ag gg A"SPC(L

(L) + 3)F$(RND(1)*2 +1)
122 IF F=1 THEN 5000
123 IF LL =1 THEN 138

Lines 100 to 120 animate the spider, making
it wander along its cage. Line 122 calls the
arrow animation routine if the fire flag has
been set, and Line 123 makes the program
jump over the balloon movement routine. By
manipulating the value of LL, the speed of
the balloon—or, rather, how often the balloon
movement routine is called—can be
regulated.

ALL OF A QUIVER
5000 PRINTLEFT$(Y$,YY)SPC(XX)"ff

AR$
5005 IF YY <20 THEN YY =YY + .1
5010 XX=XX-1:IFXX<0 THEN

F = 0:GOTO 123
5020 PRINTLEFT$(Y$,YY)SPC(XX)" a"

AR$
5030 I F(XX = BXORXX +1 = BX)AND(INT

(BY) = INT(YY)ORINT(BY +1) = INT(YY))
THEN 5050

5040 GOTO 123
5050 PRINTLEFT$(Y$,YY)SPC(XX)". gl"

AR$
5055 F = 0:KK =1:SC = SC + INT((26— YY)/

2):PRINT"I§1 p"SPC(21)SC
5060 GOSUB 6000:GOTO 80

This routine animates the arrow by blanking
out the last position, and reprinting it at the
new position. The Commodore program also
takes into account gravity.

FAST FOOD?
3000 IF F = 0 THEN PRINTLEFT$(Y$,SY +1)

SPC(35)" ❑ "

3005 FOR Z=7 TO 21
3010 PRINTLEFT$(Y$,Z —1)SPC(M)

"EilaJK"
3020 PRINTLEFT$(Y$,Z)CHR$(153)"a"

SPC(M)M$(RND(1)*2+1):FOR ZZ=1 TO
20:NEXT ZZ,Z

3030 IF SC> HS THEN HS =SC
3040 PRINT"glinfillYOU'RE DEAD!

PJPJ PJ IMIANOTH ER GAMEPJ (Y/N)? 1)

3050 GET A$:IF A$ = "Y" THEN 20
3060 IF A$ < > "N" THEN 3050
3070 PRINT" El ":POKE53272,21:END

Lines 3000 to 3020 animate the spider,
moving it down the ladder, eating Freddy.
The remainder of the routine updates the
high score if necessary, and offers another go.

El
Now complete the game by adding the follow-
ing routines:

THE MAIN LOOP
10 MODE 1
20 PROCINITIALIZE
30 PROCGAMEINIT
40 REPEAT
50 IF AX%< > 29 THEN PROCARROWMOVE
60 PROCMANMOVE
70 PROCSPIDERMOVE
80 PROCBALLOONMOVE
90 *FX21,0
100 UNTIL DEAD% = 1

The game is structured so that the graphics
characters are defined and the high score is
reset. These happen once only, before the
next subroutine initializes a new game.

The main loop itself extends from Line 40
to Line 100, and REPEATs UNTIL Freddy dies
(DEAD% = 1). The loop involves calling
PROCedures which move the arrow (if it has
been fired), move the spider, move Freddy
according to key presses, and move the
balloons. Each of the relevant PROCedures
updates the variables.

FEEDING TIME
110 S%(XINC%) =1
120 FOR X% = S%(XPOS%) TO 29:PROC

SP I DER MOVE: NEXT
130 S%(YI NC%) = 1:S%(XI NC%) = 0
140 FOR Y%= S%(YPOS%) TO 19
150 IF Y%= MY% AND AX%= 29 THEN

PRINT TAB(29,MY%+ 1);"
160 PROCSPIDERMOVE
170 NEXT Y%
180 COLOUR1:PRINTTAB(0,10); "YOU'RE

DEAD! ANOTHER GAME (Y/N)?";
190 A$ = GET$
200 IF A$ = "Y" OR A$ = "y" THEN

CLS:GOT030
210 IF A$< >"N" AND A< >"n" THEN

190
220 CLS:VDU23,1,1;0;0;0;:END

After all the bars have been removed, DEAD%
is set to one, and Lines 110 to 220 are
executed.

The routine moves the spider horizontally,
until it is above the hapless Freddy, then
vertically, chomping the ladder complete with
Freddy. The player is then given an option on
another go. The VDU 23 in Line 220 is used to
put the cursor back on the screen.

INFLATION SOARS
230 DEFPROCBALLOONMOVE
240 B%(CNT%) = B%(CNT%) —1:IF B%

(CNT%) < > 0 THEN ENDPROC
250 B%(CNT%) = B%(MAXCOUNT%)
260 PRINT TAB(B%(XPOS%),B%

(YPOS%) +1);"1110";:B%(YPOS%) = B%
(YPOS%) —1

270 IF B%(YPOS%) =4 THEN PROCBURST
BALLOON:PRINT TAB (10 + (3— PROPS%)
*9,1);" ❑ '" TAB(10 + (3— PROPS%)
*9,2);" ❑ ":PROPS%= PROPS% — 1:
PRO CMAKEBALLOON

280 IF PROPS% = 0 THEN DEAD%=1
290 IF((AY%< > B%(YPOS%) AND AY% <

> B%(YPOS%) +1) OR (AX% < B%
(XPOS%) —1 OR AX% > B%
(XPOS%) + 1)) THEN PROCDRAW
BALLOON:ENDPROC

300 SCORE% = SCOR E% + B%(POI NTS%):
PROCBURSTBALLOON:PROCMAKE
BALLOON:IF SCORE% > HISCORE% THEN
HISCORE% = SCORE%:COLOUR130:
COLOU R0: PR I NT TAB (23,0);H ISCORE%:
COLOUR 128:COLOUR2

310 ENDPROC

B%(CNT%) and B%(MAXCOUNT%) are the
most important elements of the balloon array.
Each time the PROCedure is called, Line 250
decrements B%(CNT%); when this reaches
zero, the balloon will move. After the balloon
has been moved, Line 260 copies the number
in B%(MAXCOUNT%) into B%(CNT%). The
balloon can be made to move at different
speeds by simply varying the value of
B%(MAXCOUNT%). Line 280 checks whether
the balloon has reached the top of the TV
screen, and it then calls PROCBURSTBALLOON
if it has.

Line 300 checks whether an arrow has
connected with the balloon. If the balloon has
been burst, the score is increased, and if the
balloon reaches the top, one door is removed.
If all the doors have been removed, DEAD% is
set to one.

TWANG!!
320 DEFPROCARROWMOVE
330 PRINT TA B (AX%,AY%);" CID ":AX% =

AX% — 1:IF AX%< 0 THEN AX%= 29:
AY%= MY% + 1:COLOUR3:PRINT TAB
(AX%,AY%);CH R$ (132): EN DPROC

340 IF (AY% = B%(YPOS% OR AY% = B%
(YPOS%) +1) AND (AX%= B%(XPOS%)
OR AX%= B%(XPOS%) +1) THEN
SCORE% = SCORE% + B%(POINTS%):
PROCBURSTBALLOON: PR OCMAKE
BALLOON

350 IF SCORE%> HISCORE% THEN

HISCORE% = SCORE%:COLOUR130:
COLOU R0: PR I NT TAB (23,0);H ISCORE%:
COLOUR128:COLOUR2

360 IF AX% < > 29 THEN PROCDRAWARROW
370 ENDPROC

This is the routine which animates the arrow.
The old image is blanked out, and the new
one PRINTed at the next position—
determined by variable AX%. AX% is de-
cremented in Line 330 and, to prevent the
arrow from being PRINTed off the screen,
whenever AX% falls below zero it is reset to 29.
When AX% has the value 29, the arrow is back
with Freddy and can be fired using1SPACE1.

If the value of AX% is 29, no balloons can be
burst, so the PROCedure is abandoned. If the
arrow has been fired—AX% < > 29—then
Line 360 checks if the arrow has hit the
balloon, and increases the score if it has. If a
balloon has burst, then PROCBURSTBALLOON
is called.

Line 360 calls PROCDRAWARROW, which,
in this case, draws the arrow at Freddy's
position, if AX% doesn't indicate that the
arrow is already with Freddy.

TAKING STEPS
380 DEFPROCMANMOVE
390 A$=INKEY$(0):IF A$ =""THEN

ENDPROC
400 IF A$ ="Z" OR A$ = "z" THEN 440
410 IF A$ = "A" OR A$ = "a" THEN 470
420 IF A$< >" ❑ " OR AX%< >29 THEN

ENDPROC
430 AX% = 28:PRINT TAB(29,AY%);"

ENDPROC
440 IF MY%=19 THEN ENDPROC
450 COLOUR2:PRINT TAB(30,MY%);CHR$

(138);CHR$(139):MY%= MY%+ 1:PRINT
TAB(29,AY%);" ❑ ":IF AX% = 29 THEN
AY% = AY% +1

460 PROCDRAWMAN:ENDPROC
470 IF MY% = 5 THEN ENDPROC
480 COLOUR2:PRINT TAB(30,MY% + 2);

CHR$(138);CHR$(139):MY% = MY% — 1:
PRINT TAB(29,AY%);" ❑ ":IF AX% = 29
THEN AY% = AY% — 1

490 PROCDRAWMAN:ENDPROC

Lines 390 to 420 read the keyboard. Lines
420 and 430 check if the space bar has been
pressed, and then if Freddy has an arrow.

As Freddy moves up and down (A moves
up and Z moves down), ladder characters
must be used to blank out either above or
below him (or the ladder will disappear!), and
if AX% equals 29, then the arrow must be
moved, also.

SHORT, FAT, HAIRY LEGS
500 DEFPROCSPIDERMOVE
510 TEMP% = S%(XPOS%) + S%(XINC%)
520 IF TEMP%<1 OR TEMP%> 8+ (3 —

PROPS%) * 9 THEN S%(XINC%) = —S%
(XINC%):GOT0510

530 PRINT TAB(S%(XPOS%),S%(YPOS%));
"0 ❑ ":PRINT TAB(S%(XPOS%),S%
(YPOS%) + 1);" 0 ❑ "

540 S%(YPOS%) = S%(YPOS%) + S%
(YINC%):S%(XPOS%) =TEMP%:S%
(PICTURE%) =1 —S%(PICTURE%):PROC
DRAWSPIDER

550 ENDPROC

The last of the movement PROCedures con-
cerns the Martian spider. To make the game
more interesting, it won't just sit there wait-
ing for its nosh, but will pace up and down
impatiently between the nearest door and the
end wall. There are two spider pictures, the
current picture number being stored in
S%(PICTURE%) which is manipulated in Line
540; either zero or one is produced.

Lines 530 and 540 make sure that the
spider doesn't escape from its cage before all
the doors are removed.

LIKE A LEAD BALLOON
560 DEFPROCBURSTBALLOON
570 COLOURB%(CLR%):PRINT TAB(B%

(X POS%), B%(YPOS%));C H R$(134);CH R$
(135)' TAB(B%(XPOS%),B%(YPOS%)
+1);CHR$(136);CHR$(137)

580 COLOUR130:COLOUR0:PRINT TAB(14,0);
SCORE%:COLOUR128:COLOUR2

590 SOUND0, — 15,206,2:FORX =1T0700:
NEXT

600 BL%= BL%-1:COLOUR130:COLOUR0:
PRINT TAB(7,0);BL%;:IF BL%= 9 THEN
PRINT" 0 ";

-610 IF BL%= 0 THEN BL% = 15 + 5*LEVEL%:
LEVEL% = LEVEL% + 1:PRINT TAB(7,0);
BL%;TAB(2,0);LEVEL%:COLOUR128:
CO LOU R2: PROPS% = 3: PR OC D RAWDOORS

620 COLOUR128:COLOUR2
630 PRINT TAB(B%(XPOS%),B%(YPOS%));

" ❑ 0 ";TAB(B%(XPOS%),B%
(YPOS%) + 1);" ❑ ❑ "

640 PRINT TAB(AX%,AY%);" ❑❑ ":
AX%= 29:AY% = MY% + 1

650 PROCDRAWARROW:PROCDRAWMAN
660 ENDPROC

All that remains now is to add a routine which
will burst the balloon if an arrow is on target.
The routine is very simple, just PRINTing the
image of the burst balloon on screen, then
erasing the image. The number of balloons
remaining is adjusted, along with the level, if
necessary. The arrow will be reset to Freddy's
position, ready for the next balloon.

There's a bumper package of games,
with the completion of CLIFFHANGER,
a challenging WARGAME in which you
use your strategy to outwit the computer—
plus a new ADVENTURE that probes the limits
of memory to create an exciting escapade set in
a medieval castle.

So far, most of the INPUT course has been
about BASIC, because that is the language that
is built into home micros* But now, there's a
chance to look at some of the alternatives
you can use on your computer,
like PASCAL and FORTH— and
why BASIC isn't always

best*
And there's more on

GRAPHICS, a new MUSIC
program, a useful TOOLKIT,
and details of COMPUTER
LEARNING

Starting a new series, INPUT looks at
the alternatives to BASIC—
programming in a NEW LANGUAGE. In
the first part, discover what's involved in
LEARNING LOGO

UWargames aren't just for the
belligerent—they are all about
developing a strategy within the ground-
rules of the game* The INPUT version
takes you through a complete program

Just for fun, enter the HOROSCOPE
PROGRAM and predict the future

There is cloudy weather in store for
CLIFFHANGER as you add features to
the sky above the playing area

Explore the mysteries of growth with a
MACHINE CODE LIFE GAME

„/ PLUS *** For COMMODORE users,
how to combine COLOUR SPRITES

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

